lkml.org 
[lkml]   [2022]   [Jan]   [24]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH 5.10 135/563] sched/fair: Fix per-CPU kthread and wakee stacking for asym CPU capacity
Date
From: Vincent Donnefort <vincent.donnefort@arm.com>

[ Upstream commit 014ba44e8184e1acf93e0cbb7089ee847802f8f0 ]

select_idle_sibling() has a special case for tasks woken up by a per-CPU
kthread where the selected CPU is the previous one. For asymmetric CPU
capacity systems, the assumption was that the wakee couldn't have a
bigger utilization during task placement than it used to have during the
last activation. That was not considering uclamp.min which can completely
change between two task activations and as a consequence mandates the
fitness criterion asym_fits_capacity(), even for the exit path described
above.

Fixes: b4c9c9f15649 ("sched/fair: Prefer prev cpu in asymmetric wakeup path")
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20211129173115.4006346-1-vincent.donnefort@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
---
kernel/sched/fair.c | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)

diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index a7589552be5fc..2a33cb5a10e59 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -6286,7 +6286,8 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
if (is_per_cpu_kthread(current) &&
in_task() &&
prev == smp_processor_id() &&
- this_rq()->nr_running <= 1) {
+ this_rq()->nr_running <= 1 &&
+ asym_fits_capacity(task_util, prev)) {
return prev;
}

--
2.34.1


\
 
 \ /
  Last update: 2022-01-24 22:40    [W:1.829 / U:0.188 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site