lkml.org 
[lkml]   [2022]   [Sep]   [29]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH v2 15/39] x86/mm: Check Shadow Stack page fault errors
Date
From: Yu-cheng Yu <yu-cheng.yu@intel.com>

The CPU performs "shadow stack accesses" when it expects to encounter
shadow stack mappings. These accesses can be implicit (via CALL/RET
instructions) or explicit (instructions like WRSS).

Shadow stacks accesses to shadow-stack mappings can see faults in normal,
valid operation just like regular accesses to regular mappings. Shadow
stacks need some of the same features like delayed allocation, swap and
copy-on-write. The kernel needs to use faults to implement those features.

The architecture has concepts of both shadow stack reads and shadow stack
writes. Any shadow stack access to non-shadow stack memory will generate
a fault with the shadow stack error code bit set.

This means that, unlike normal write protection, the fault handler needs
to create a type of memory that can be written to (with instructions that
generate shadow stack writes), even to fulfill a read access. So in the
case of COW memory, the COW needs to take place even with a shadow stack
read. Otherwise the page will be left (shadow stack) writable in
userspace. So to trigger the appropriate behavior, set FAULT_FLAG_WRITE
for shadow stack accesses, even if the access was a shadow stack read.

Shadow stack accesses can also result in errors, such as when a shadow
stack overflows, or if a shadow stack access occurs to a non-shadow-stack
mapping. Also, generate the errors for invalid shadow stack accesses.

Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>

---

v2:
- Update commit log with verbiage/feedback from Dave Hansen
- Clarify reasoning for FAULT_FLAG_WRITE for all shadow stack accesses
- Update comments with some verbiage from Dave Hansen

Yu-cheng v30:
- Update Subject line and add a verb

arch/x86/include/asm/trap_pf.h | 2 ++
arch/x86/mm/fault.c | 21 +++++++++++++++++++++
2 files changed, 23 insertions(+)

diff --git a/arch/x86/include/asm/trap_pf.h b/arch/x86/include/asm/trap_pf.h
index 10b1de500ab1..afa524325e55 100644
--- a/arch/x86/include/asm/trap_pf.h
+++ b/arch/x86/include/asm/trap_pf.h
@@ -11,6 +11,7 @@
* bit 3 == 1: use of reserved bit detected
* bit 4 == 1: fault was an instruction fetch
* bit 5 == 1: protection keys block access
+ * bit 6 == 1: shadow stack access fault
* bit 15 == 1: SGX MMU page-fault
*/
enum x86_pf_error_code {
@@ -20,6 +21,7 @@ enum x86_pf_error_code {
X86_PF_RSVD = 1 << 3,
X86_PF_INSTR = 1 << 4,
X86_PF_PK = 1 << 5,
+ X86_PF_SHSTK = 1 << 6,
X86_PF_SGX = 1 << 15,
};

diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c
index fa71a5d12e87..e5697b393069 100644
--- a/arch/x86/mm/fault.c
+++ b/arch/x86/mm/fault.c
@@ -1107,8 +1107,22 @@ access_error(unsigned long error_code, struct vm_area_struct *vma)
(error_code & X86_PF_INSTR), foreign))
return 1;

+ /*
+ * Shadow stack accesses (PF_SHSTK=1) are only permitted to
+ * shadow stack VMAs. All other accesses result in an error.
+ */
+ if (error_code & X86_PF_SHSTK) {
+ if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
+ return 1;
+ if (unlikely(!(vma->vm_flags & VM_WRITE)))
+ return 1;
+ return 0;
+ }
+
if (error_code & X86_PF_WRITE) {
/* write, present and write, not present: */
+ if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
+ return 1;
if (unlikely(!(vma->vm_flags & VM_WRITE)))
return 1;
return 0;
@@ -1300,6 +1314,13 @@ void do_user_addr_fault(struct pt_regs *regs,

perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);

+ /*
+ * In order to fullfull a shadow stack access, the page needs
+ * to be made (shadow stack) writable. So treat all shadow stack
+ * accesses as writes.
+ */
+ if (error_code & X86_PF_SHSTK)
+ flags |= FAULT_FLAG_WRITE;
if (error_code & X86_PF_WRITE)
flags |= FAULT_FLAG_WRITE;
if (error_code & X86_PF_INSTR)
--
2.17.1
\
 
 \ /
  Last update: 2022-09-30 00:33    [W:1.223 / U:0.308 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site