lkml.org 
[lkml]   [2022]   [May]   [27]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH v2] sched: Queue task on wakelist in the same llc if the wakee cpu is idle
Date
The main idea of wakelist is to avoid cache bouncing. However,
commit 518cd6234178 ("sched: Only queue remote wakeups when
crossing cache boundaries") disabled queuing tasks on wakelist when
the cpus share llc. This is because, at that time, the scheduler must
send IPIs to do ttwu_queue_wakelist. Nowadays, ttwu_queue_wakelist also
supports TIF_POLLING, so this is not a problem now when the wakee cpu is
in idle polling.

Benefits:
Queuing the task on idle cpu can help improving performance on waker cpu
and utilization on wakee cpu, and further improve locality because
the wakee cpu can handle its own rq. This patch helps improving rt on
our real java workloads where wakeup happens frequently.

Consider the normal condition (CPU0 and CPU1 share same llc)
Before this patch:

CPU0 CPU1

select_task_rq() idle
rq_lock(CPU1->rq)
enqueue_task(CPU1->rq)
notify CPU1 (by sending IPI or CPU1 polling)

resched()

After this patch:

CPU0 CPU1

select_task_rq() idle
add to wakelist of CPU1
notify CPU1 (by sending IPI or CPU1 polling)

rq_lock(CPU1->rq)
enqueue_task(CPU1->rq)
resched()

We see CPU0 can finish its work earlier. It only needs to put task to
wakelist and return.
While CPU1 is idle, so let itself handle its own runqueue data.

This patch brings no difference about IPI.
This patch only takes effect when the wakee cpu is:
1) idle polling
2) idle not polling

For 1), there will be no IPI with or without this patch.

For 2), there will always be an IPI before or after this patch.
Before this patch: waker cpu will enqueue task and check preempt. Since
"idle" will be sure to be preempted, waker cpu must send an resched IPI.
After this patch: waker cpu will put the task to the wakelist of wakee
cpu, and send an IPI.

Benchmark:
We've tested schbench, unixbench, and hachbench on both x86 and arm64.

On x86 (Intel Xeon Platinum 8269CY):
schbench -m 2 -t 8

Latency percentiles (usec) before after
50.0000th: 8 6
75.0000th: 10 7
90.0000th: 11 8
95.0000th: 12 8
*99.0000th: 15 10
99.5000th: 16 11
99.9000th: 20 14

Unixbench with full threads (104)
before after
Dhrystone 2 using register variables 3004614211 3004725417 0.00%
Double-Precision Whetstone 616764.3 617355.9 0.10%
Execl Throughput 26449.2 26468.6 0.07%
File Copy 1024 bufsize 2000 maxblocks 832763.3 824099.4 -1.04%
File Copy 256 bufsize 500 maxblocks 210718.7 211775.1 0.50%
File Copy 4096 bufsize 8000 maxblocks 2393528.2 2398755.4 0.22%
Pipe Throughput 144559102.7 144605068.8 0.03%
Pipe-based Context Switching 3192192.9 3571238.1 11.87%
Process Creation 95270.5 98865.4 3.77%
Shell Scripts (1 concurrent) 113780.6 113924.7 0.13%
Shell Scripts (8 concurrent) 15557.2 15508.9 -0.31%
System Call Overhead 5359984.1 5356711.4 -0.06%

hackbench -g 1 -l 100000
before after
Time 3.246 2.251

On arm64 (Ampere Altra):
schbench -m 2 -t 8

Latency percentiles (usec) before after
50.0000th: 14 10
75.0000th: 19 14
90.0000th: 22 16
95.0000th: 23 16
*99.0000th: 24 17
99.5000th: 24 17
99.9000th: 31 25

Unixbench with full threads (80)
before after
Dhrystone 2 using register variables 3536787968 3536476016 -0.01%
Double-Precision Whetstone 629370.6 629333.3 -0.01%
Execl Throughput 66615.9 66288.8 -0.49%
File Copy 1024 bufsize 2000 maxblocks 1038402.1 1050181.2 1.13%
File Copy 256 bufsize 500 maxblocks 311054.2 310317.2 -0.24%
File Copy 4096 bufsize 8000 maxblocks 2276795.6 2297703 0.92%
Pipe Throughput 130409359.9 130390848.7 -0.01%
Pipe-based Context Switching 3148440.7 3383705.1 7.47%
Process Creation 111574.3 119728.6 7.31%
Shell Scripts (1 concurrent) 122980.7 122657.4 -0.26%
Shell Scripts (8 concurrent) 17482.8 17476.8 -0.03%
System Call Overhead 4424103.4 4430062.6 0.13%

hackbench -g 1 -l 100000
before after
Time 4.217 2.916

Our patch has improvement on schbench, hackbench
and Pipe-based Context Switching of unixbench
when there exists idle cpus,
and no obvious regression on other tests of unixbench.
This can help improve rt in scenes where wakeup happens frequently.

Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
---
v2:
Modify commit log to describe key point in detail.
Add more benchmark results on more archs.

v1: https://lore.kernel.org/all/20220513062427.2375743-1-dtcccc@linux.alibaba.com/

---
kernel/sched/core.c | 12 +++++++++---
1 file changed, 9 insertions(+), 3 deletions(-)

diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index bfa7452ca92e..8764ad152f6e 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -3817,6 +3817,9 @@ static inline bool ttwu_queue_cond(int cpu, int wake_flags)
if (!cpu_active(cpu))
return false;

+ if (cpu == smp_processor_id())
+ return false;
+
/*
* If the CPU does not share cache, then queue the task on the
* remote rqs wakelist to avoid accessing remote data.
@@ -3824,6 +3827,12 @@ static inline bool ttwu_queue_cond(int cpu, int wake_flags)
if (!cpus_share_cache(smp_processor_id(), cpu))
return true;

+ /*
+ * If the CPU is idle, let itself do activation to improve utilization.
+ */
+ if (available_idle_cpu(cpu))
+ return true;
+
/*
* If the task is descheduling and the only running task on the
* CPU then use the wakelist to offload the task activation to
@@ -3839,9 +3848,6 @@ static inline bool ttwu_queue_cond(int cpu, int wake_flags)
static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
{
if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
- if (WARN_ON_ONCE(cpu == smp_processor_id()))
- return false;
-
sched_clock_cpu(cpu); /* Sync clocks across CPUs */
__ttwu_queue_wakelist(p, cpu, wake_flags);
return true;
--
2.27.0
\
 
 \ /
  Last update: 2022-05-27 11:12    [W:0.073 / U:0.244 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site