lkml.org 
[lkml]   [2022]   [Feb]   [3]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[RFC PATCH] tick/sched: Ensure quiet_vmstat() is called when the idle tick was stopped too
Date
Hi Frederic,

If I understand correctly, in the context of the idle task and a nohz_full
CPU, quiet_vmstat() can be called: before stopping the idle tick, entering
an idle state and on exit. In particular, for the latter case, when the
idle task is required to reschedule, the idle tick can remain stopped and
the timer expiration time endless i.e., KTIME_MAX. Now, indeed before a
nohz_full CPU enters an idle state, CPU-specific vmstat counters should
be processed to ensure the respective values have been reset and folded
into the zone specific vm_stat[]. That being said, it can only occur when:
the idle tick was previously stopped, and reprogramming of the timer is not
required.

A customer provided some evidence which indicates that the idle tick was
stopped; albeit, CPU-specific vmstat counters still remained populated.
Thus one can only assume quiet_vmstat() was not invoked on return to the
idle loop.

Unfortunately, I suspect this divergence might erroneously prevent a
reclaim attempt by kswapd. If the number of zone specific free pages are
below their per-cpu drift value then zone_page_state_snapshot() is used to
compute a more accurate view of the aforementioned statistic.
Thus any task blocked on the NUMA node specific pfmemalloc_wait queue will
be unable to make significant progress via direct reclaim unless it is
killed after being woken up by kswapd (see throttle_direct_reclaim()).
That being said, eventually reclaim should give up if the conditions are
correct, no?

Consider the following theoretical scenario:

1. CPU Y migrated running task A to CPU X that was
in an idle state i.e. waiting for an IRQ - not
polling; marked the current task on CPU X to
need/or require a reschedule i.e., set
TIF_NEED_RESCHED and invoked a reschedule IPI to
CPU X (see sched_move_task())

2. CPU X acknowledged the reschedule IPI from CPU Y;
generic idle loop code noticed the
TIF_NEED_RESCHED flag against the idle task and
attempts to exit of the loop and calls the main
scheduler function i.e. __schedule().

Since the idle tick was previously stopped no
scheduling-clock tick would occur.
So, no deferred timers would be handled

3. Post transition to kernel execution Task A
running on CPU Y, indirectly released a few pages
(e.g. see __free_one_page()); CPU Y's
vm_stat_diff[NR_FREE_PAGES] was updated and zone
specific vm_stat[] update was deferred as per the
CPU-specific stat threshold

4. Task A does invoke exit(2) and the kernel does
remove the task from the run-queue; the idle task
was selected to execute next since there are no
other runnable tasks assigned to the given CPU
(see pick_next_task() and pick_next_task_idle())

5. On return to the idle loop since the idle tick
was already stopped and can remain so (see [1]
below) e.g. no pending soft IRQs, no attempt is
made to zero and fold CPU Y's vmstat counters
since reprogramming of the scheduling-clock tick
is not required/or needed (see [2])

...
do_idle
{

__current_set_polling()
tick_nohz_idle_enter()

while (!need_resched()) {

local_irq_disable()

...

/* No polling or broadcast event */
cpuidle_idle_call()
{

if (cpuidle_not_available(drv, dev)) {
tick_nohz_idle_stop_tick()
__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched))
{
int cpu = smp_processor_id()

if (ts->timer_expires_base)
expires = ts->timer_expires
else if (can_stop_idle_tick(cpu, ts))
(1) -------> expires = tick_nohz_next_event(ts, cpu)
else
return

ts->idle_calls++

if (expires > 0LL) {

tick_nohz_stop_tick(ts, cpu)
{

if (ts->tick_stopped && (expires == ts->next_tick)) {
(2) -------> if (tick == KTIME_MAX || ts->next_tick ==
hrtimer_get_expires(&ts->sched_timer))
return
}
...
}


The idea with this patch is to ensure refresh_cpu_vm_stats(false) is called
on return to the idle loop when the idle tick was previously stopped.

Any feedback/or testing would be appreciated.


Signed-off-by: Aaron Tomlin <atomlin@redhat.com>
---
kernel/time/tick-sched.c | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)

diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index 17a283ce2b20..61874df064b6 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -876,6 +876,9 @@ static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
ts->do_timer_last = 0;
}

+ /* Attempt to fold when the idle tick is stopped or not */
+ quiet_vmstat();
+
/* Skip reprogram of event if its not changed */
if (ts->tick_stopped && (expires == ts->next_tick)) {
/* Sanity check: make sure clockevent is actually programmed */
@@ -897,7 +900,6 @@ static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
*/
if (!ts->tick_stopped) {
calc_load_nohz_start();
- quiet_vmstat();

ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
ts->tick_stopped = 1;
--
2.34.1
\
 
 \ /
  Last update: 2022-02-03 22:44    [W:0.275 / U:0.256 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site