lkml.org 
[lkml]   [2022]   [Nov]   [9]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH v2 2/6] exit: Put an upper limit on how often we can oops
Date
From: Jann Horn <jannh@google.com>

Many Linux systems are configured to not panic on oops; but allowing an
attacker to oops the system **really** often can make even bugs that look
completely unexploitable exploitable (like NULL dereferences and such) if
each crash elevates a refcount by one or a lock is taken in read mode, and
this causes a counter to eventually overflow.

The most interesting counters for this are 32 bits wide (like open-coded
refcounts that don't use refcount_t). (The ldsem reader count on 32-bit
platforms is just 16 bits, but probably nobody cares about 32-bit platforms
that much nowadays.)

So let's panic the system if the kernel is constantly oopsing.

The speed of oopsing 2^32 times probably depends on several factors, like
how long the stack trace is and which unwinder you're using; an empirically
important one is whether your console is showing a graphical environment or
a text console that oopses will be printed to.
In a quick single-threaded benchmark, it looks like oopsing in a vfork()
child with a very short stack trace only takes ~510 microseconds per run
when a graphical console is active; but switching to a text console that
oopses are printed to slows it down around 87x, to ~45 milliseconds per
run.
(Adding more threads makes this faster, but the actual oops printing
happens under &die_lock on x86, so you can maybe speed this up by a factor
of around 2 and then any further improvement gets eaten up by lock
contention.)

It looks like it would take around 8-12 days to overflow a 32-bit counter
with repeated oopsing on a multi-core X86 system running a graphical
environment; both me (in an X86 VM) and Seth (with a distro kernel on
normal hardware in a standard configuration) got numbers in that ballpark.

12 days aren't *that* short on a desktop system, and you'd likely need much
longer on a typical server system (assuming that people don't run graphical
desktop environments on their servers), and this is a *very* noisy and
violent approach to exploiting the kernel; and it also seems to take orders
of magnitude longer on some machines, probably because stuff like EFI
pstore will slow it down a ton if that's active.

[Moved sysctl into kernel/exit.c -kees]

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221107201317.324457-1-jannh@google.com
---
Documentation/admin-guide/sysctl/kernel.rst | 8 ++++
kernel/exit.c | 42 +++++++++++++++++++++
2 files changed, 50 insertions(+)

diff --git a/Documentation/admin-guide/sysctl/kernel.rst b/Documentation/admin-guide/sysctl/kernel.rst
index 98d1b198b2b4..09f3fb2f8585 100644
--- a/Documentation/admin-guide/sysctl/kernel.rst
+++ b/Documentation/admin-guide/sysctl/kernel.rst
@@ -667,6 +667,14 @@ This is the default behavior.
an oops event is detected.


+oops_limit
+==========
+
+Number of kernel oopses after which the kernel should panic when
+``panic_on_oops`` is not set. Setting this to 0 or 1 has the same effect
+as setting ``panic_on_oops=1``.
+
+
osrelease, ostype & version
===========================

diff --git a/kernel/exit.c b/kernel/exit.c
index 35e0a31a0315..892f38aeb0a4 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -72,6 +72,33 @@
#include <asm/unistd.h>
#include <asm/mmu_context.h>

+/*
+ * The default value should be high enough to not crash a system that randomly
+ * crashes its kernel from time to time, but low enough to at least not permit
+ * overflowing 32-bit refcounts or the ldsem writer count.
+ */
+static unsigned int oops_limit = 10000;
+
+#if CONFIG_SYSCTL
+static struct ctl_table kern_exit_table[] = {
+ {
+ .procname = "oops_limit",
+ .data = &oops_limit,
+ .maxlen = sizeof(oops_limit),
+ .mode = 0644,
+ .proc_handler = proc_douintvec,
+ },
+ { }
+};
+
+static __init int kernel_exit_sysctls_init(void)
+{
+ register_sysctl_init("kernel", kern_exit_table);
+ return 0;
+}
+late_initcall(kernel_exit_sysctls_init);
+#endif
+
static void __unhash_process(struct task_struct *p, bool group_dead)
{
nr_threads--;
@@ -874,6 +901,8 @@ void __noreturn do_exit(long code)

void __noreturn make_task_dead(int signr)
{
+ static atomic_t oops_count = ATOMIC_INIT(0);
+
/*
* Take the task off the cpu after something catastrophic has
* happened.
@@ -897,6 +926,19 @@ void __noreturn make_task_dead(int signr)
preempt_count_set(PREEMPT_ENABLED);
}

+ /*
+ * Every time the system oopses, if the oops happens while a reference
+ * to an object was held, the reference leaks.
+ * If the oops doesn't also leak memory, repeated oopsing can cause
+ * reference counters to wrap around (if they're not using refcount_t).
+ * This means that repeated oopsing can make unexploitable-looking bugs
+ * exploitable through repeated oopsing.
+ * To make sure this can't happen, place an upper bound on how often the
+ * kernel may oops without panic().
+ */
+ if (atomic_inc_return(&oops_count) >= READ_ONCE(oops_limit))
+ panic("Oopsed too often (oops_limit is %d)", oops_limit);
+
/*
* We're taking recursive faults here in make_task_dead. Safest is to just
* leave this task alone and wait for reboot.
--
2.34.1
\
 
 \ /
  Last update: 2022-11-09 21:02    [W:0.088 / U:1.128 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site