lkml.org 
[lkml]   [2022]   [Nov]   [30]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH rcu 11/16] scsi/scsi_error: Use call_rcu_hurry() instead of call_rcu()
Date
From: Uladzislau Rezki <urezki@gmail.com>

Earlier commits in this series allow battery-powered systems to build
their kernels with the default-disabled CONFIG_RCU_LAZY=y Kconfig option.
This Kconfig option causes call_rcu() to delay its callbacks in order
to batch them. This means that a given RCU grace period covers more
callbacks, thus reducing the number of grace periods, in turn reducing
the amount of energy consumed, which increases battery lifetime which
can be a very good thing. This is not a subtle effect: In some important
use cases, the battery lifetime is increased by more than 10%.

This CONFIG_RCU_LAZY=y option is available only for CPUs that offload
callbacks, for example, CPUs mentioned in the rcu_nocbs kernel boot
parameter passed to kernels built with CONFIG_RCU_NOCB_CPU=y.

Delaying callbacks is normally not a problem because most callbacks do
nothing but free memory. If the system is short on memory, a shrinker
will kick all currently queued lazy callbacks out of their laziness,
thus freeing their memory in short order. Similarly, the rcu_barrier()
function, which blocks until all currently queued callbacks are invoked,
will also kick lazy callbacks, thus enabling rcu_barrier() to complete
in a timely manner.

However, there are some cases where laziness is not a good option.
For example, synchronize_rcu() invokes call_rcu(), and blocks until
the newly queued callback is invoked. It would not be a good for
synchronize_rcu() to block for ten seconds, even on an idle system.
Therefore, synchronize_rcu() invokes call_rcu_hurry() instead of
call_rcu(). The arrival of a non-lazy call_rcu_hurry() callback on a
given CPU kicks any lazy callbacks that might be already queued on that
CPU. After all, if there is going to be a grace period, all callbacks
might as well get full benefit from it.

Yes, this could be done the other way around by creating a
call_rcu_lazy(), but earlier experience with this approach and
feedback at the 2022 Linux Plumbers Conference shifted the approach
to call_rcu() being lazy with call_rcu_hurry() for the few places
where laziness is inappropriate.

And another call_rcu() instance that cannot be lazy is the one in the
scsi_eh_scmd_add() function. Leaving this instance lazy results in
unacceptably slow boot times.

Therefore, make scsi_eh_scmd_add() use call_rcu_hurry() in order to
revert to the old behavior.

[ paulmck: Apply s/call_rcu_flush/call_rcu_hurry/ feedback from Tejun Heo. ]

Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Uladzislau Rezki <urezki@gmail.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: <linux-scsi@vger.kernel.org>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
---
drivers/scsi/scsi_error.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/drivers/scsi/scsi_error.c b/drivers/scsi/scsi_error.c
index 6995c89792300..ac5ff0783b4f0 100644
--- a/drivers/scsi/scsi_error.c
+++ b/drivers/scsi/scsi_error.c
@@ -312,7 +312,7 @@ void scsi_eh_scmd_add(struct scsi_cmnd *scmd)
* Ensure that all tasks observe the host state change before the
* host_failed change.
*/
- call_rcu(&scmd->rcu, scsi_eh_inc_host_failed);
+ call_rcu_hurry(&scmd->rcu, scsi_eh_inc_host_failed);
}

/**
--
2.31.1.189.g2e36527f23
\
 
 \ /
  Last update: 2022-11-30 19:16    [W:0.205 / U:0.368 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site