lkml.org 
[lkml]   [2022]   [Jun]   [11]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
Date
From
SubjectRe: [PATCH v10 2/7] sched/fair: Decay task PELT values during wakeup migration
On Tue, Jun 07, 2022 at 01:32:49PM +0100, Vincent Donnefort wrote:

> From: Vincent Donnefort <vincent.donnefort@arm.com>
>
> Before being migrated to a new CPU, a task sees its PELT values
> synchronized with rq last_update_time. Once done, that same task will also
> have its sched_avg last_update_time reset. This means the time between
> the migration and the last clock update will not be accounted for in
> util_avg and a discontinuity will appear. This issue is amplified by the
> PELT clock scaling. It takes currently one tick after the CPU being idle
> to let clock_pelt catching up clock_task.
>
> This is especially problematic for asymmetric CPU capacity systems which
> need stable util_avg signals for task placement and energy estimation.
>
> Ideally, this problem would be solved by updating the runqueue clocks
> before the migration. But that would require taking the runqueue lock
> which is quite expensive [1]. Instead estimate the missing time and update
> the task util_avg with that value.
>
> To that end, we need sched_clock_cpu() but it is a costly function. Limit
> the usage to the case where the source CPU is idle as we know this is when
> the clock is having the biggest risk of being outdated. In this such case,
> let's call it cfs_idle_lag the delta time between the rq_clock_pelt value
> at rq idle and cfs_rq idle. And rq_idle_lag the delta between "now" and
> the rq_clock_pelt at rq idle.
>
> The estimated PELT clock is then:
>
> last_update_time (the cfs_rq's last_update_time)
> + cfs_idle_lag (delta between cfs_rq's update and rq's update)
> + rq_idle_lag (delta between rq's update and now)
>
> last_update_time = cfs_rq_clock_pelt()
> = rq_clock_pelt() - cfs->throttled_clock_pelt_time
>
> cfs_idle_lag = rq_clock_pelt()@rq_idle -
> rq_clock_pelt()@cfs_rq_idle
>
> rq_idle_lag = sched_clock_cpu() - rq_clock()@rq_idle
>
> The rq_clock_pelt() from last_update_time being the same as
> rq_clock_pelt()@cfs_rq_idle, we can write:
>
> estimation = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
> sched_clock_cpu() - rq_clock()@rq_idle
>
> The clocks being not accessible without the rq lock taken, some timestamps
> are created:
>
> rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
> rq_clock()@rq_idle is rq->enter_idle
> cfs->throttled_clock_pelt_time is cfs_rq->throttled_pelt_idle
>
> The rq_idle_lag part of the missing time is however an estimation that
> doesn't take into account IRQ and Paravirt time.
>
> [1] https://lkml.kernel.org/r/20190709115759.10451-1-chris.redpath@arm.com
>
> Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
> Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
>
> diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
> index 05614d9b919c..77f3eb1bf624 100644
> --- a/kernel/sched/fair.c
> +++ b/kernel/sched/fair.c
> @@ -3310,6 +3310,29 @@ static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
> }
>
> #ifdef CONFIG_SMP
> +static inline bool load_avg_is_decayed(struct sched_avg *sa)
> +{
> + if (sa->load_sum)
> + return false;
> +
> + if (sa->util_sum)
> + return false;
> +
> + if (sa->runnable_sum)
> + return false;
> +
> + /*
> + * _avg must be null when _sum are null because _avg = _sum / divider
> + * Make sure that rounding and/or propagation of PELT values never
> + * break this.
> + */
> + SCHED_WARN_ON(sa->load_avg ||
> + sa->util_avg ||
> + sa->runnable_avg);
> +
> + return true;
> +}
> +
> static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
> {
> return u64_u32_load_copy(cfs_rq->avg.last_update_time,
> @@ -3347,27 +3370,12 @@ static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
> if (cfs_rq->load.weight)
> return false;
>
> - if (cfs_rq->avg.load_sum)
> - return false;
> -
> - if (cfs_rq->avg.util_sum)
> - return false;
> -
> - if (cfs_rq->avg.runnable_sum)
> + if (!load_avg_is_decayed(&cfs_rq->avg))
> return false;
>
> if (child_cfs_rq_on_list(cfs_rq))
> return false;
>
> - /*
> - * _avg must be null when _sum are null because _avg = _sum / divider
> - * Make sure that rounding and/or propagation of PELT values never
> - * break this.
> - */
> - SCHED_WARN_ON(cfs_rq->avg.load_avg ||
> - cfs_rq->avg.util_avg ||
> - cfs_rq->avg.runnable_avg);
> -
> return true;
> }
>
> @@ -3706,6 +3714,89 @@ static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum
>
> #endif /* CONFIG_FAIR_GROUP_SCHED */
>
> +#ifdef CONFIG_NO_HZ_COMMON
> +static inline void migrate_se_pelt_lag(struct sched_entity *se)
> +{
> + u64 throttled = 0, now, lut;
> + struct cfs_rq *cfs_rq;
> + struct rq *rq;
> + bool is_idle;
> +
> + if (load_avg_is_decayed(&se->avg))
> + return;
> +
> + cfs_rq = cfs_rq_of(se);
> + rq = rq_of(cfs_rq);
> +
> + rcu_read_lock();
> + is_idle = is_idle_task(rcu_dereference(rq->curr));
> + rcu_read_unlock();
> +
> + /*
> + * The lag estimation comes with a cost we don't want to pay all the
> + * time. Hence, limiting to the case where the source CPU is idle and
> + * we know we are at the greatest risk to have an outdated clock.
> + */
> + if (!is_idle)
> + return;
> +
> + /*
> + * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
> + *
> + * last_update_time (the cfs_rq's last_update_time)
> + * = cfs_rq_clock_pelt()@cfs_rq_idle
> + * = rq_clock_pelt()@cfs_rq_idle
> + * - cfs->throttled_clock_pelt_time@cfs_rq_idle
> + *
> + * cfs_idle_lag (delta between cfs_rq's update and rq's update)
> + * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
> + *
> + * rq_idle_lag (delta between rq's update and now)
> + * = sched_clock_cpu() - rq_clock()@rq_idle
> + *
> + * We can then write:
> + *
> + * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
> + * sched_clock_cpu() - rq_clock()@rq_idle
> + * Where:
> + * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
> + * rq_clock()@rq_idle is rq->clock_idle
> + * cfs->throttled_clock_pelt_time@cfs_rq_idle is
> + * cfs_rq->throttled_pelt_idle
> + */
> +
> +#ifdef CONFIG_CFS_BANDWIDTH
> + throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
> + /* The clock has been stopped for throttling */
> + if (throttled == U64_MAX)
> + return;
> +#endif
> + now = u64_u32_load(rq->clock_pelt_idle);
> + /*
> + * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
> + * is observed the old clock_pelt_idle value and the new clock_idle,
> + * which lead to an underestimation. The opposite would lead to an
> + * overestimation.
> + */

The sentence of 'The opposite would lead to an overestimation' means that
clock_pelt_idle is new clock_idle is old if I am not wrong. If clock_pelt_idle
is new then clock_idle is new too. The later is the updated state of both, IMHO
this sentence does not stand.

> + smp_rmb();
> + lut = cfs_rq_last_update_time(cfs_rq);
> +
> + now -= throttled;
> + if (now < lut)
> + /*
> + * cfs_rq->avg.last_update_time is more recent than our
> + * estimation, let's use it.
> + */
> + now = lut;
> + else
> + now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
> +
> + __update_load_avg_blocked_se(now, se);
> +}
> +#else
> +static void migrate_se_pelt_lag(struct sched_entity *se) {}
> +#endif
> +
> /**
> * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
> * @now: current time, as per cfs_rq_clock_pelt()
> @@ -4437,6 +4528,9 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
> */
> if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
> update_min_vruntime(cfs_rq);
> +
> + if (cfs_rq->nr_running == 0)
> + update_idle_cfs_rq_clock_pelt(cfs_rq);
> }
>
> /*
> @@ -6911,6 +7005,8 @@ static void detach_entity_cfs_rq(struct sched_entity *se);
> */
> static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
> {
> + struct sched_entity *se = &p->se;
> +
> /*
> * As blocked tasks retain absolute vruntime the migration needs to
> * deal with this by subtracting the old and adding the new
> @@ -6918,7 +7014,6 @@ static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
> * the task on the new runqueue.
> */
> if (READ_ONCE(p->__state) == TASK_WAKING) {
> - struct sched_entity *se = &p->se;
> struct cfs_rq *cfs_rq = cfs_rq_of(se);
>
> se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
> @@ -6930,25 +7025,29 @@ static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
> * rq->lock and can modify state directly.
> */
> lockdep_assert_rq_held(task_rq(p));
> - detach_entity_cfs_rq(&p->se);
> + detach_entity_cfs_rq(se);
>
> } else {
> + remove_entity_load_avg(se);
> +
> /*
> - * We are supposed to update the task to "current" time, then
> - * its up to date and ready to go to new CPU/cfs_rq. But we
> - * have difficulty in getting what current time is, so simply
> - * throw away the out-of-date time. This will result in the
> - * wakee task is less decayed, but giving the wakee more load
> - * sounds not bad.
> + * Here, the task's PELT values have been updated according to
> + * the current rq's clock. But if that clock hasn't been
> + * updated in a while, a substantial idle time will be missed,
> + * leading to an inflation after wake-up on the new rq.
> + *
> + * Estimate the missing time from the cfs_rq last_update_time
> + * and update sched_avg to improve the PELT continuity after
> + * migration.
> */
> - remove_entity_load_avg(&p->se);
> + migrate_se_pelt_lag(se);
> }
>
> /* Tell new CPU we are migrated */
> - p->se.avg.last_update_time = 0;
> + se->avg.last_update_time = 0;
>
> /* We have migrated, no longer consider this task hot */
> - p->se.exec_start = 0;
> + se->exec_start = 0;
>
> update_scan_period(p, new_cpu);
> }
> @@ -8114,6 +8213,9 @@ static bool __update_blocked_fair(struct rq *rq, bool *done)
> if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
> update_tg_load_avg(cfs_rq);
>
> + if (cfs_rq->nr_running == 0)
> + update_idle_cfs_rq_clock_pelt(cfs_rq);
> +
> if (cfs_rq == &rq->cfs)
> decayed = true;
> }
> diff --git a/kernel/sched/pelt.h b/kernel/sched/pelt.h
> index 4ff2ed4f8fa1..3a0e0dc28721 100644
> --- a/kernel/sched/pelt.h
> +++ b/kernel/sched/pelt.h
> @@ -61,6 +61,25 @@ static inline void cfs_se_util_change(struct sched_avg *avg)
> WRITE_ONCE(avg->util_est.enqueued, enqueued);
> }
>
> +static inline u64 rq_clock_pelt(struct rq *rq)
> +{
> + lockdep_assert_rq_held(rq);
> + assert_clock_updated(rq);
> +
> + return rq->clock_pelt - rq->lost_idle_time;
> +}
> +
> +/* The rq is idle, we can sync to clock_task */
> +static inline void _update_idle_rq_clock_pelt(struct rq *rq)
> +{
> + rq->clock_pelt = rq_clock_task(rq);
> +
> + u64_u32_store(rq->clock_idle, rq_clock(rq));
> + /* Paired with smp_rmb in migrate_se_pelt_lag() */
> + smp_wmb();
> + u64_u32_store(rq->clock_pelt_idle, rq_clock_pelt(rq));
> +}
> +
> /*
> * The clock_pelt scales the time to reflect the effective amount of
> * computation done during the running delta time but then sync back to
> @@ -76,8 +95,7 @@ static inline void cfs_se_util_change(struct sched_avg *avg)
> static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
> {
> if (unlikely(is_idle_task(rq->curr))) {
> - /* The rq is idle, we can sync to clock_task */
> - rq->clock_pelt = rq_clock_task(rq);
> + _update_idle_rq_clock_pelt(rq);
> return;
> }
>
> @@ -130,17 +148,23 @@ static inline void update_idle_rq_clock_pelt(struct rq *rq)
> */
> if (util_sum >= divider)
> rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt;
> +
> + _update_idle_rq_clock_pelt(rq);
> }
>
> -static inline u64 rq_clock_pelt(struct rq *rq)
> +#ifdef CONFIG_CFS_BANDWIDTH
> +static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
> {
> - lockdep_assert_rq_held(rq);
> - assert_clock_updated(rq);
> + u64 throttled;
>
> - return rq->clock_pelt - rq->lost_idle_time;
> + if (unlikely(cfs_rq->throttle_count))
> + throttled = U64_MAX;
> + else
> + throttled = cfs_rq->throttled_clock_pelt_time;
> +
> + u64_u32_store(cfs_rq->throttled_pelt_idle, throttled);
> }
>
> -#ifdef CONFIG_CFS_BANDWIDTH
> /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
> static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
> {
> @@ -150,6 +174,7 @@ static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
> return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time;
> }
> #else
> +static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { }
> static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
> {
> return rq_clock_pelt(rq_of(cfs_rq));
> @@ -204,6 +229,7 @@ update_rq_clock_pelt(struct rq *rq, s64 delta) { }
> static inline void
> update_idle_rq_clock_pelt(struct rq *rq) { }
>
> +static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { }
> #endif
>
>
> diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
> index bf4a0ec98678..de5c99bea7be 100644
> --- a/kernel/sched/sched.h
> +++ b/kernel/sched/sched.h
> @@ -648,6 +648,10 @@ struct cfs_rq {
> int runtime_enabled;
> s64 runtime_remaining;
>
> + u64 throttled_pelt_idle;
> +#ifndef CONFIG_64BIT
> + u64 throttled_pelt_idle_copy;
> +#endif
> u64 throttled_clock;
> u64 throttled_clock_pelt;
> u64 throttled_clock_pelt_time;
> @@ -1020,6 +1024,12 @@ struct rq {
> u64 clock_task ____cacheline_aligned;
> u64 clock_pelt;
> unsigned long lost_idle_time;
> + u64 clock_pelt_idle;
> + u64 clock_idle;
> +#ifndef CONFIG_64BIT
> + u64 clock_pelt_idle_copy;
> + u64 clock_idle_copy;
> +#endif
>
> atomic_t nr_iowait;
>
> --
> 2.36.1.255.ge46751e96f-goog

\
 
 \ /
  Last update: 2022-06-11 15:57    [W:0.723 / U:0.964 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site