lkml.org 
[lkml]   [2022]   [Jan]   [20]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
Date
From
Subject[RFC][PATCH v2 0/5] sched: User Managed Concurrency Groups
Latest version, many changes since last time, still under heavy discussion.

Seems to work with the test-case I have (below), but that still has a few gaps,
coverage wise.

Still haven't done the SMP wakeup thing, finally get the idea with
worker-timeouts but haven't yet implemented that.

Happy hacking..

----

#define _GNU_SOURCE
#include <unistd.h>
#include <sys/types.h>
#include <sys/syscall.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <signal.h>

#ifndef __NR_umcg_ctl
#define __NR_umcg_ctl 450
#define __NR_umcg_wait 451
#define __NR_umcg_kick 452
#endif

#include <linux/list.h>
#include "include/uapi/linux/umcg.h"

/* syscall wrappers */

static inline int
sys_umcg_ctl(u32 flags, struct umcg_task *self, clockid_t which_clock)
{
return syscall(__NR_umcg_ctl, flags, self, which_clock);
}

static inline int
sys_umcg_wait(u32 flags, u64 timo)
{
return syscall(__NR_umcg_wait, flags, timo);
}

static inline int
sys_umcg_kick(u32 flags, pid_t tid)
{
return syscall(__NR_umcg_kick, flags, tid);
}

/* the 'foo' scheduler */

struct foo_task {
struct umcg_task task;
struct list_head node;
pid_t tid;
};

struct foo_server {
struct umcg_task task;
struct list_head node;
pid_t tid;
struct foo_task *cur;
int workers;
};

void foo_add(struct foo_server *server, struct umcg_task *t)
{
struct foo_task *foo = container_of(t, struct foo_task, task);

t->runnable_workers_ptr = 0ULL;
list_add_tail(&foo->node, &server->node);
}

struct foo_task *foo_pick_next(struct foo_server *server)
{
struct foo_task *first = NULL;

if (list_empty(&server->node))
return first;

first = list_first_entry(&server->node, struct foo_task, node);
list_del(&first->node);
return first;
}

#define NSEC_PER_SEC 1000000000ULL

u64 foo_time(void)
{
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (unsigned long long)ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
}

void foo_yield(struct umcg_task *self)
{
self->state = UMCG_TASK_RUNNABLE | UMCG_TF_COND_WAIT;
sys_umcg_wait(0, 0);
}

#define TICK_NSEC NSEC_PER_SEC

static volatile bool foo_preemptible = false;

/* our workers */

static volatile bool done = false;

static void umcg_signal(int signr)
{
done = true;
}

/* always running worker */
void *worker_fn0(void *arg)
{
struct foo_server *server = arg;
struct foo_task task = { };
unsigned long i;
int ret;

task.tid = gettid();
task.task.server_tid = server->tid;
task.task.state = UMCG_TASK_BLOCKED;

printf("A == %d\n", gettid());

ret = sys_umcg_ctl(UMCG_CTL_REGISTER|UMCG_CTL_WORKER, &task.task, CLOCK_MONOTONIC);
if (ret) {
perror("umcg_ctl(A): ");
exit(-1);
}

__atomic_add_fetch(&server->workers, 1, __ATOMIC_RELAXED);

while (!done) {
int x = i++;

if (!(x % 1000000)) {
putchar('.');
fflush(stdout);
}

/* co-operative or preemptible */
if (!foo_preemptible && !(x % 10000000))
foo_yield(&task.task);
}

printf("A == done\n");

__atomic_add_fetch(&server->workers, -1, __ATOMIC_RELAXED);

ret = sys_umcg_ctl(UMCG_CTL_UNREGISTER|UMCG_CTL_WORKER, &task.task, 0);
if (ret) {
perror("umcg_ctl(~A): ");
exit(-1);
}

return NULL;
}

/* event driven worker */
void *worker_fn1(void *arg)
{
struct foo_server *server = arg;
struct foo_task task = { };
int ret;

task.tid = gettid();
task.task.server_tid = server->tid;
task.task.state = UMCG_TASK_BLOCKED;

printf("B == %d\n", gettid());

ret = sys_umcg_ctl(UMCG_CTL_REGISTER|UMCG_CTL_WORKER, &task.task, CLOCK_MONOTONIC);
if (ret) {
perror("umcg_ctl(B): ");
exit(-1);
}

__atomic_add_fetch(&server->workers, 1, __ATOMIC_RELAXED);

while (!done) {
printf("B\n");
fflush(stdout);

sleep(1);
}

printf("B == done\n");

__atomic_add_fetch(&server->workers, -1, __ATOMIC_RELAXED);

ret = sys_umcg_ctl(UMCG_CTL_UNREGISTER|UMCG_CTL_WORKER, &task.task, 0);
if (ret) {
perror("umcg_ctl(~B): ");
exit(-1);
}

return NULL;
}

void *worker_fn2(void *arg)
{
struct foo_server *server = arg;
struct foo_task task = { };
int ret;

task.tid = gettid();
task.task.server_tid = server->tid;
task.task.state = UMCG_TASK_BLOCKED;

printf("C == %d\n", gettid());

ret = sys_umcg_ctl(UMCG_CTL_REGISTER|UMCG_CTL_WORKER, &task.task, CLOCK_MONOTONIC);
if (ret) {
perror("umcg_ctl(C): ");
exit(-1);
}

__atomic_add_fetch(&server->workers, 1, __ATOMIC_RELAXED);

while (!done) {
printf("C\n");
fflush(stdout);

sleep(2);
}

printf("C == done\n");

__atomic_add_fetch(&server->workers, -1, __ATOMIC_RELAXED);

ret = sys_umcg_ctl(UMCG_CTL_UNREGISTER|UMCG_CTL_WORKER, &task.task, 0);
if (ret) {
perror("umcg_ctl(~C): ");
exit(-1);
}

return NULL;
}

/* the server */

int main(int argc, char **argv)
{
struct umcg_task *runnable_ptr, *next;
struct foo_server server = { };
pthread_t worker[3];
u64 timeout = 0;
u32 tid;
int ret;

struct sigaction sa = {
.sa_handler = umcg_signal,
};

sigaction(SIGINT, &sa, NULL);

printf("server == %d\n", gettid());
fflush(stdout);

server.tid = gettid();
INIT_LIST_HEAD(&server.node);
server.task.server_tid = gettid();
server.task.state = UMCG_TASK_RUNNING;

ret = sys_umcg_ctl(UMCG_CTL_REGISTER, &server.task, CLOCK_MONOTONIC);
if (ret) {
perror("umcg_ctl: ");
exit(-1);
}

pthread_create(&worker[0], NULL, worker_fn0, &server);
pthread_create(&worker[1], NULL, worker_fn1, &server);
pthread_create(&worker[2], NULL, worker_fn2, &server);

if (argc > 1) {
foo_preemptible = true;
/*
* setup preemption tick
*/
timeout = foo_time() + TICK_NSEC;
}

while (!(done && !__atomic_load_n(&server.workers, __ATOMIC_RELAXED))) {
/*
* Mark the server as runnable first, so we can detect
* additions to the runnable list after we read it.
*/
__atomic_store_n(&server.task.state,
UMCG_TASK_RUNNABLE | UMCG_TF_COND_WAIT,
__ATOMIC_RELAXED);

/*
* comsume the runnable notification list and add
* the tasks to our local runqueue.
*/
runnable_ptr = (void*)__atomic_exchange_n(&server.task.runnable_workers_ptr,
NULL, __ATOMIC_SEQ_CST);
while (runnable_ptr) {
next = (void *)runnable_ptr->runnable_workers_ptr;
foo_add(&server, runnable_ptr);
runnable_ptr = next;
}

if (server.cur && server.cur->task.state == UMCG_TASK_RUNNING) {
/*
* Assert ::next_tid still points there and has RUNNING bit on
*/
if (server.task.next_tid != (server.cur->tid | UMCG_TID_RUNNING)) {
printf("current not running: %d %x\n",
server.task.next_tid & UMCG_TID_MASK,
server.task.next_tid & ~UMCG_TID_MASK);
exit(-1);
}

putchar('x');
} else {
tid = 0;
server.cur = foo_pick_next(&server);
if (server.cur)
tid = server.cur->tid;

__atomic_store_n(&server.task.next_tid, tid, __ATOMIC_RELAXED);

printf("pick: %d\n", tid);
}
fflush(stdout);

ret = sys_umcg_wait(0, timeout);

/*
* If we set ::next_tid but it hasn't been consumed by the
* syscall due to failure, make sure to put the task back on
* the queue, lest we leak it.
*/
tid = __atomic_load_n(&server.task.next_tid, __ATOMIC_RELAXED);
if (tid && !(tid & UMCG_TID_RUNNING)) {
foo_add(&server, &server.cur->task);
server.cur = NULL;
putchar('*');
}

if (!ret)
continue;

switch (errno) {
case EAGAIN:
/*
* Got a wakeup, try again.
*/
continue;

case ETIMEDOUT:
/*
* timeout: drive preemption
*/
putchar('t');
fflush(stdout);

/*
* Next tick..
*/
timeout += TICK_NSEC;

/*
* If we have a current, cmpxchg set TF_PREEMPT and on success
* send it a signal to kick it into the kernel such that
* it might re-report itself runnable.
*/
if (server.cur) {
struct foo_task *t = server.cur;
u32 val = UMCG_TASK_RUNNING;
u32 new = UMCG_TASK_RUNNING | UMCG_TF_PREEMPT;

if (__atomic_compare_exchange_n(&t->task.state, &val, new,
false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
sys_umcg_kick(0, t->tid);
}
}
/*
* Either way around, if the cmpxchg
* failed the task will have blocked
* and we should re-start the loop.
*/
continue;

default:
printf("errno: %d\n", errno);
perror("wait:");
exit(-1);
}
}

pthread_join(worker[0], NULL);
pthread_join(worker[1], NULL);
pthread_join(worker[2], NULL);

return 0;
}


\
 
 \ /
  Last update: 2022-01-20 17:10    [W:0.367 / U:0.432 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site