lkml.org 
[lkml]   [2021]   [Jul]   [14]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
Date
From
SubjectRe: [PATCH Part2 RFC v4 07/40] x86/sev: Split the physmap when adding the page in RMP table
On Wed, Jul 07, 2021, Brijesh Singh wrote:
> The integrity guarantee of SEV-SNP is enforced through the RMP table.
> The RMP is used in conjuntion with standard x86 and IOMMU page
> tables to enforce memory restrictions and page access rights. The
> RMP is indexed by system physical address, and is checked at the end
> of CPU and IOMMU table walks. The RMP check is enforced as soon as
> SEV-SNP is enabled globally in the system. Not every memory access
> requires an RMP check. In particular, the read accesses from the
> hypervisor do not require RMP checks because the data confidentiality
> is already protected via memory encryption. When hardware encounters
> an RMP checks failure, it raise a page-fault exception. The RMP bit in
> fault error code can be used to determine if the fault was due to an
> RMP checks failure.
>
> A write from the hypervisor goes through the RMP checks. When the
> hypervisor writes to pages, hardware checks to ensures that the assigned
> bit in the RMP is zero (i.e page is shared). If the page table entry that
> gives the sPA indicates that the target page size is a large page, then
> all RMP entries for the 4KB constituting pages of the target must have the
> assigned bit 0. If one of entry does not have assigned bit 0 then hardware
> will raise an RMP violation. To resolve it, split the page table entry
> leading to target page into 4K.

Isn't the above just saying:

All RMP entries covered by a large page must match the shared vs. encrypted
state of the page, e.g. host large pages must have assigned=0 for all relevant
RMP entries.

> This poses a challenge in the Linux memory model. The Linux kernel
> creates a direct mapping of all the physical memory -- referred to as
> the physmap. The physmap may contain a valid mapping of guest owned pages.
> During the page table walk, the host access may get into the situation
> where one of the pages within the large page is owned by the guest (i.e
> assigned bit is set in RMP). A write to a non-guest within the large page
> will raise an RMP violation. Call set_memory_4k() to split the physmap
> before adding the page in the RMP table. This ensures that the pages
> added in the RMP table are used as 4K in the physmap.
>
> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
> ---
> arch/x86/kernel/sev.c | 6 ++++++
> 1 file changed, 6 insertions(+)
>
> diff --git a/arch/x86/kernel/sev.c b/arch/x86/kernel/sev.c
> index 949efe530319..a482e01f880a 100644
> --- a/arch/x86/kernel/sev.c
> +++ b/arch/x86/kernel/sev.c
> @@ -2375,6 +2375,12 @@ int rmpupdate(struct page *page, struct rmpupdate *val)
> if (!cpu_feature_enabled(X86_FEATURE_SEV_SNP))
> return -ENXIO;
>
> + ret = set_memory_4k((unsigned long)page_to_virt(page), 1);

IIUC, this shatters the direct map for page that's assigned to an SNP guest, and
the large pages are never recovered?

I believe a better approach would be to do something similar to memfd_secret[*],
which encountered a similar problem with the direct map. Instead of forcing the
direct map to be forever 4k, unmap the direct map when making a page guest private,
and restore the direct map when it's made shared (or freed).

I thought memfd_secret had also solved the problem of restoring large pages in
the direct map, but at a glance I can't tell if that's actually implemented
anywhere. But, even if it's not currently implemented, I think it makes sense
to mimic the memfd_secret approach so that both features can benefit if large
page preservation/restoration is ever added.

[*] https://lkml.kernel.org/r/20210518072034.31572-5-rppt@kernel.org

> + if (ret) {
> + pr_err("Failed to split physical address 0x%lx (%d)\n", spa, ret);
> + return ret;
> + }
> +
> /* Retry if another processor is modifying the RMP entry. */
> do {
> /* Binutils version 2.36 supports the RMPUPDATE mnemonic. */
> --
> 2.17.1
>

\
 
 \ /
  Last update: 2021-07-15 00:25    [W:0.656 / U:0.304 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site