lkml.org 
[lkml]   [2021]   [Jun]   [18]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
From
SubjectRe: [PATCH -V8 02/10] mm/numa: automatically generate node migration order
Date
On 18 Jun 2021, at 2:15, Huang Ying wrote:

> From: Dave Hansen <dave.hansen@linux.intel.com>
>
> When memory fills up on a node, memory contents can be
> automatically migrated to another node. The biggest problems are
> knowing when to migrate and to where the migration should be
> targeted.
>
> The most straightforward way to generate the "to where" list would
> be to follow the page allocator fallback lists. Those lists
> already tell us if memory is full where to look next. It would
> also be logical to move memory in that order.
>
> But, the allocator fallback lists have a fatal flaw: most nodes
> appear in all the lists. This would potentially lead to migration
> cycles (A->B, B->A, A->B, ...).
>
> Instead of using the allocator fallback lists directly, keep a
> separate node migration ordering. But, reuse the same data used
> to generate page allocator fallback in the first place:
> find_next_best_node().
>
> This means that the firmware data used to populate node distances
> essentially dictates the ordering for now. It should also be
> architecture-neutral since all NUMA architectures have a working
> find_next_best_node().
>
> The protocol for node_demotion[] access and writing is not
> standard. It has no specific locking and is intended to be read
> locklessly. Readers must take care to avoid observing changes
> that appear incoherent. This was done so that node_demotion[]
> locking has no chance of becoming a bottleneck on large systems
> with lots of CPUs in direct reclaim.
>
> This code is unused for now. It will be called later in the
> series.
>
> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
> Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
> Reviewed-by: Yang Shi <shy828301@gmail.com>
> Cc: Michal Hocko <mhocko@suse.com>
> Cc: Wei Xu <weixugc@google.com>
> Cc: David Rientjes <rientjes@google.com>
> Cc: Dan Williams <dan.j.williams@intel.com>
> Cc: David Hildenbrand <david@redhat.com>
> Cc: osalvador <osalvador@suse.de>
>
> --
>
> Changes from 20200122:
> * Add big node_demotion[] comment
> Changes from 20210302:
> * Fix typo in node_demotion[] comment
> ---
> mm/internal.h | 5 ++
> mm/migrate.c | 175 +++++++++++++++++++++++++++++++++++++++++++++++-
> mm/page_alloc.c | 2 +-
> 3 files changed, 180 insertions(+), 2 deletions(-)
>
> diff --git a/mm/internal.h b/mm/internal.h
> index 2f1182948aa6..0344cd78e170 100644
> --- a/mm/internal.h
> +++ b/mm/internal.h
> @@ -522,12 +522,17 @@ static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
>
> #ifdef CONFIG_NUMA
> extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
> +extern int find_next_best_node(int node, nodemask_t *used_node_mask);
> #else
> static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
> unsigned int order)
> {
> return NODE_RECLAIM_NOSCAN;
> }
> +static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
> +{
> + return NUMA_NO_NODE;
> +}
> #endif
>
> extern int hwpoison_filter(struct page *p);
> diff --git a/mm/migrate.c b/mm/migrate.c
> index 6cab668132f9..111f8565f75d 100644
> --- a/mm/migrate.c
> +++ b/mm/migrate.c
> @@ -1136,6 +1136,44 @@ static int __unmap_and_move(struct page *page, struct page *newpage,
> return rc;
> }
>
> +
> +/*
> + * node_demotion[] example:
> + *
> + * Consider a system with two sockets. Each socket has
> + * three classes of memory attached: fast, medium and slow.
> + * Each memory class is placed in its own NUMA node. The
> + * CPUs are placed in the node with the "fast" memory. The
> + * 6 NUMA nodes (0-5) might be split among the sockets like
> + * this:
> + *
> + * Socket A: 0, 1, 2
> + * Socket B: 3, 4, 5
> + *
> + * When Node 0 fills up, its memory should be migrated to
> + * Node 1. When Node 1 fills up, it should be migrated to
> + * Node 2. The migration path start on the nodes with the
> + * processors (since allocations default to this node) and
> + * fast memory, progress through medium and end with the
> + * slow memory:
> + *
> + * 0 -> 1 -> 2 -> stop
> + * 3 -> 4 -> 5 -> stop
> + *
> + * This is represented in the node_demotion[] like this:
> + *
> + * { 1, // Node 0 migrates to 1
> + * 2, // Node 1 migrates to 2
> + * -1, // Node 2 does not migrate
> + * 4, // Node 3 migrates to 4
> + * 5, // Node 4 migrates to 5
> + * -1} // Node 5 does not migrate
> + */
> +
> +/*
> + * Writes to this array occur without locking. READ_ONCE()
> + * is recommended for readers to ensure consistent reads.
> + */
> static int node_demotion[MAX_NUMNODES] __read_mostly =
> {[0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE};
>
> @@ -1150,7 +1188,13 @@ static int node_demotion[MAX_NUMNODES] __read_mostly =
> */
> int next_demotion_node(int node)
> {
> - return node_demotion[node];
> + /*
> + * node_demotion[] is updated without excluding
> + * this function from running. READ_ONCE() avoids
> + * reading multiple, inconsistent 'node' values
> + * during an update.
> + */
> + return READ_ONCE(node_demotion[node]);
> }

Is it necessary to have two separate patches to add node_demotion and
next_demotion_node() then modify it immediately? Maybe merge Patch 1 into 2?

Hmm, I just checked Patch 3 and it changes node_demotion again and uses RCU.
I guess it might be much simpler to just introduce node_demotion with RCU
in this patch and Patch 3 only takes care of hotplug events.

>
> /*
> @@ -3144,3 +3188,132 @@ void migrate_vma_finalize(struct migrate_vma *migrate)
> }
> EXPORT_SYMBOL(migrate_vma_finalize);
> #endif /* CONFIG_DEVICE_PRIVATE */
> +
> +/* Disable reclaim-based migration. */
> +static void disable_all_migrate_targets(void)
> +{
> + int node;
> +
> + for_each_online_node(node)
> + node_demotion[node] = NUMA_NO_NODE;
> +}
> +
> +/*
> + * Find an automatic demotion target for 'node'.
> + * Failing here is OK. It might just indicate
> + * being at the end of a chain.
> + */
> +static int establish_migrate_target(int node, nodemask_t *used)
> +{
> + int migration_target;
> +
> + /*
> + * Can not set a migration target on a
> + * node with it already set.
> + *
> + * No need for READ_ONCE() here since this
> + * in the write path for node_demotion[].
> + * This should be the only thread writing.
> + */
> + if (node_demotion[node] != NUMA_NO_NODE)
> + return NUMA_NO_NODE;
> +
> + migration_target = find_next_best_node(node, used);
> + if (migration_target == NUMA_NO_NODE)
> + return NUMA_NO_NODE;
> +
> + node_demotion[node] = migration_target;
> +
> + return migration_target;
> +}
> +
> +/*
> + * When memory fills up on a node, memory contents can be
> + * automatically migrated to another node instead of
> + * discarded at reclaim.
> + *
> + * Establish a "migration path" which will start at nodes
> + * with CPUs and will follow the priorities used to build the
> + * page allocator zonelists.
> + *
> + * The difference here is that cycles must be avoided. If
> + * node0 migrates to node1, then neither node1, nor anything
> + * node1 migrates to can migrate to node0.
> + *
> + * This function can run simultaneously with readers of
> + * node_demotion[]. However, it can not run simultaneously
> + * with itself. Exclusion is provided by memory hotplug events
> + * being single-threaded.
> + */
> +static void __set_migration_target_nodes(void)
> +{
> + nodemask_t next_pass = NODE_MASK_NONE;
> + nodemask_t this_pass = NODE_MASK_NONE;
> + nodemask_t used_targets = NODE_MASK_NONE;
> + int node;
> +
> + /*
> + * Avoid any oddities like cycles that could occur
> + * from changes in the topology. This will leave
> + * a momentary gap when migration is disabled.
> + */
> + disable_all_migrate_targets();
> +
> + /*
> + * Ensure that the "disable" is visible across the system.
> + * Readers will see either a combination of before+disable
> + * state or disable+after. They will never see before and
> + * after state together.
> + *
> + * The before+after state together might have cycles and
> + * could cause readers to do things like loop until this
> + * function finishes. This ensures they can only see a
> + * single "bad" read and would, for instance, only loop
> + * once.
> + */
> + smp_wmb();
> +
> + /*
> + * Allocations go close to CPUs, first. Assume that
> + * the migration path starts at the nodes with CPUs.
> + */
> + next_pass = node_states[N_CPU];

Is there a plan of allowing user to change where the migration
path starts? Or maybe one step further providing an interface
to allow user to specify the demotion path. Something like
/sys/devices/system/node/node*/node_demotion.


> +again:
> + this_pass = next_pass;
> + next_pass = NODE_MASK_NONE;
> + /*
> + * To avoid cycles in the migration "graph", ensure
> + * that migration sources are not future targets by
> + * setting them in 'used_targets'. Do this only
> + * once per pass so that multiple source nodes can
> + * share a target node.
> + *
> + * 'used_targets' will become unavailable in future
> + * passes. This limits some opportunities for
> + * multiple source nodes to share a destination.
> + */
> + nodes_or(used_targets, used_targets, this_pass);
> + for_each_node_mask(node, this_pass) {
> + int target_node = establish_migrate_target(node, &used_targets);
> +
> + if (target_node == NUMA_NO_NODE)
> + continue;
> +
> + /* Visit targets from this pass in the next pass: */
> + node_set(target_node, next_pass);
> + }
> + /* Is another pass necessary? */
> + if (!nodes_empty(next_pass))
> + goto again;
> +}
> +
> +/*
> + * For callers that do not hold get_online_mems() already.
> + */
> +__maybe_unused // <- temporay to prevent warnings during bisects
> +static void set_migration_target_nodes(void)
> +{
> + get_online_mems();
> + __set_migration_target_nodes();
> + put_online_mems();
> +}
> diff --git a/mm/page_alloc.c b/mm/page_alloc.c
> index d1f5de1c1283..e033ae2e8bce 100644
> --- a/mm/page_alloc.c
> +++ b/mm/page_alloc.c
> @@ -5973,7 +5973,7 @@ static int node_load[MAX_NUMNODES];
> *
> * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
> */
> -static int find_next_best_node(int node, nodemask_t *used_node_mask)
> +int find_next_best_node(int node, nodemask_t *used_node_mask)
> {
> int n, val;
> int min_val = INT_MAX;
> --
> 2.30.2



Best Regards,
Yan, Zi
[unhandled content-type:application/pgp-signature]
\
 
 \ /
  Last update: 2021-06-18 17:15    [W:0.188 / U:0.796 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site