lkml.org 
[lkml]   [2021]   [Apr]   [21]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
SubjectRe: [PATCH V5] perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task
From
Date


On 4/21/2021 4:11 AM, Peter Zijlstra wrote:
>> @@ -2327,10 +2367,17 @@ static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
>>
>> static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
>> {
>> + unsigned long flags;
>>
>> if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
>> return;
>>
>> + if (x86_pmu.sched_task && event->hw.target) {
>> + local_irq_save(flags);
>> + perf_sched_cb_dec(event->ctx->pmu);
>> + local_irq_restore(flags);
>> + }
>> +
>> if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
>> on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
>> }
> I don't understand how this can possibly be correct. Both
> perf_sched_cb_{inc,dec} modify strict per-cpu state, but the mapped
> functions happen on whatever random CPU of the moment whenever the task
> memory map changes.
>
> Suppose we mmap() on CPU0 and then exit on CPU1. Suppose the task does
> mmap() on CPU0 but then creates threads and runs on CPU1-4 concurrently
> before existing on CPU5.
>
> Could be I'm not seeing it due to having a snot-brain, please explain.

You are right.
I implemented a new test case which mmap() on CPU 3, run and exit on CPU
0. It can still read the counter values from other tasks on CPU 0.

Actually, I don't think we need perf_sched_cb_{inc,dec} and sched_task().

The mm->context.perf_rdpmc_allowed will tell us if it's a RDPMC task.
I think a clean way should be to add a new check_leakage() method. When
perf schedules in a RDPMC task, we invoke the method and clear the dirty
counters.
(I use a generic name check_leakage for the method so it can be reused
by other ARCHs if possible.)

The patch is as below. The new and old test cases are all passed. I will
do more tests.

diff --git a/arch/x86/events/core.c b/arch/x86/events/core.c
index c7fcc8d..229dd48 100644
--- a/arch/x86/events/core.c
+++ b/arch/x86/events/core.c
@@ -1624,6 +1624,8 @@ static void x86_pmu_del(struct perf_event *event,
int flags)
if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
goto do_del;

+ __set_bit(event->hw.idx, cpuc->dirty);
+
/*
* Not a TXN, therefore cleanup properly.
*/
@@ -2631,6 +2633,37 @@ static int x86_pmu_check_period(struct perf_event
*event, u64 value)
return 0;
}

+static void x86_pmu_clear_dirty_counters(void)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ int i;
+
+ /* Don't need to clear the assigned counter. */
+ for (i = 0; i < cpuc->n_events; i++)
+ __clear_bit(cpuc->assign[i], cpuc->dirty);
+
+ if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
+ return;
+
+ for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
+ /* Metrics and fake events don't have corresponding HW counters. */
+ if (is_metric_idx(i) || (i == INTEL_PMC_IDX_FIXED_VLBR))
+ continue;
+ else if (i >= INTEL_PMC_IDX_FIXED)
+ wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
+ else
+ wrmsrl(x86_pmu_event_addr(i), 0);
+ }
+
+ bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
+}
+
+static void x86_pmu_check_leakage(void)
+{
+ if (READ_ONCE(x86_pmu.attr_rdpmc))
+ x86_pmu_clear_dirty_counters();
+}
+
static int x86_pmu_aux_output_match(struct perf_event *event)
{
if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
@@ -2675,6 +2708,7 @@ static struct pmu pmu = {
.sched_task = x86_pmu_sched_task,
.swap_task_ctx = x86_pmu_swap_task_ctx,
.check_period = x86_pmu_check_period,
+ .check_leakage = x86_pmu_check_leakage,

.aux_output_match = x86_pmu_aux_output_match,

diff --git a/arch/x86/events/perf_event.h b/arch/x86/events/perf_event.h
index 27fa85e..d6003e0 100644
--- a/arch/x86/events/perf_event.h
+++ b/arch/x86/events/perf_event.h
@@ -229,6 +229,7 @@ struct cpu_hw_events {
*/
struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
+ unsigned long dirty[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
int enabled;

int n_events; /* the # of events in the below arrays */
diff --git a/include/linux/perf_event.h b/include/linux/perf_event.h
index a763928..bcf3964 100644
--- a/include/linux/perf_event.h
+++ b/include/linux/perf_event.h
@@ -514,6 +514,11 @@ struct pmu {
* Check period value for PERF_EVENT_IOC_PERIOD ioctl.
*/
int (*check_period) (struct perf_event *event, u64 value); /*
optional */
+
+ /*
+ * Check and clear dirty counters to prevent potential leakage
+ */
+ void (*check_leakage) (void); /* optional */
};

enum perf_addr_filter_action_t {
diff --git a/kernel/events/core.c b/kernel/events/core.c
index 928b166..b496113 100644
--- a/kernel/events/core.c
+++ b/kernel/events/core.c
@@ -3822,6 +3822,12 @@ static void cpu_ctx_sched_in(struct
perf_cpu_context *cpuctx,
ctx_sched_in(ctx, cpuctx, event_type, task);
}

+static bool has_check_leakage(struct pmu *pmu)
+{
+ return pmu->check_leakage && current->mm &&
+ atomic_read(&current->mm->context.perf_rdpmc_allowed);
+}
+
static void perf_event_context_sched_in(struct perf_event_context *ctx,
struct task_struct *task)
{
@@ -3832,6 +3838,8 @@ static void perf_event_context_sched_in(struct
perf_event_context *ctx,
if (cpuctx->task_ctx == ctx) {
if (cpuctx->sched_cb_usage)
__perf_pmu_sched_task(cpuctx, true);
+ if (has_check_leakage(pmu))
+ pmu->check_leakage();
return;
}

@@ -3858,6 +3866,8 @@ static void perf_event_context_sched_in(struct
perf_event_context *ctx,

if (cpuctx->sched_cb_usage && pmu->sched_task)
pmu->sched_task(cpuctx->task_ctx, true);
+ if (has_check_leakage(pmu))
+ pmu->check_leakage();

perf_pmu_enable(pmu);

Thanks,
Kan

\
 
 \ /
  Last update: 2021-04-21 17:13    [W:0.052 / U:0.312 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site