lkml.org 
[lkml]   [2021]   [Nov]   [7]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
From
Date
SubjectRe: [PATCH v0.8 4/6] sched/umcg, lib/umcg: implement libumcg
On Sun, Nov 7, 2021 at 8:33 AM Tao Zhou <tao.zhou@linux.dev> wrote:
>
> On Thu, Nov 04, 2021 at 12:58:02PM -0700, Peter Oskolkov wrote:
>
> > +/* Update the state variable, set new timestamp. */
> > +static bool umcg_update_state(uint64_t *state, uint64_t *prev, uint64_t next)
> > +{
> > + uint64_t prev_ts = (*prev) >> (64 - UMCG_STATE_TIMESTAMP_BITS);
> > + struct timespec now;
> > + uint64_t next_ts;
> > + int res;
> > +
> > + /*
> > + * clock_gettime(CLOCK_MONOTONIC, ...) takes less than 20ns on a
> > + * typical Intel processor on average, even when run concurrently,
> > + * so the overhead is low enough for most applications.
> > + *
> > + * If this is still too high, `next_ts = prev_ts + 1` should work
> > + * as well. The only real requirement is that the "timestamps" are
> > + * uniqueue per thread within a reasonable time frame.
> > + */
> > + res = clock_gettime(CLOCK_MONOTONIC, &now);
> > + assert(!res);
> > + next_ts = (now.tv_sec * NSEC_PER_SEC + now.tv_nsec) >>
> > + UMCG_STATE_TIMESTAMP_GRANULARITY;
> > +
> > + /* Cut higher order bits. */
> > + next_ts &= ((1ULL << UMCG_STATE_TIMESTAMP_BITS) - 1);
>
> This is the right cut.. The same to the kernel side.

Yes, thanks!

>
> > +
> > + if (next_ts == prev_ts)
> > + ++next_ts;
> > +
> > +#ifndef NDEBUG
> > + if (prev_ts > next_ts) {
> > + fprintf(stderr, "%s: time goes back: prev_ts: %lu "
> > + "next_ts: %lu diff: %lu\n", __func__,
> > + prev_ts, next_ts, prev_ts - next_ts);
> > + }
> > +#endif
> > +
> > + /* Remove old timestamp, if any. */
> > + next &= ((1ULL << (64 - UMCG_STATE_TIMESTAMP_BITS)) - 1);
> > +
> > + /* Set the new timestamp. */
> > + next |= (next_ts << (64 - UMCG_STATE_TIMESTAMP_BITS));
> > +
> > + /*
> > + * TODO: review whether memory order below can be weakened to
> > + * memory_order_acq_rel for success and memory_order_acquire for
> > + * failure.
> > + */
> > + return atomic_compare_exchange_strong_explicit(state, prev, next,
> > + memory_order_seq_cst, memory_order_seq_cst);
> > +}
> > +
>
> > +static void task_unlock(struct umcg_task_tls *task, uint64_t expected_state,
> > + uint64_t new_state)
> > +{
> > + bool ok;
> > + uint64_t next;
> > + uint64_t prev = atomic_load_explicit(&task->umcg_task.state_ts,
> > + memory_order_acquire);
> > +
> > + next = ((prev & ~UMCG_TASK_STATE_MASK_FULL) | new_state) & ~UMCG_TF_LOCKED;
>
> Use UMCG_TASK_STATE_MASK instead and the other state flag can be checked.

Why? We want to clear the TF_LOCKED flag and keep every other bit of
state, including other state flags (but excluding timestamp).


>
> All others places that use UMCG_TASK_STATE_MASK_FULL to mask to check
> the task state may seems reasonable if the state flag not allowed to
> be set when we check that task state, otherwise use UMCG_TASK_STATE_MASK
> will be enough.
>
> Not sure.
>
>
> Thanks,
> Tao
> > + assert(next != prev);
> > + assert((prev & UMCG_TASK_STATE_MASK_FULL & ~UMCG_TF_LOCKED) == expected_state);
> > +
> > + ok = umcg_update_state(&task->umcg_task.state_ts, &prev, next);
> > + assert(ok);
> > +}

\
 
 \ /
  Last update: 2021-11-07 19:28    [W:1.435 / U:0.104 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site