lkml.org 
[lkml]   [2021]   [Nov]   [18]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH V1 XRT Alveo Infrastructure 1/9] Documentation: fpga: Add a document describing XRT Alveo driver infrastructure
Date
Describe XRT driver architecture and provide basic overview of
Xilinx Alveo platform.

Signed-off-by: Sonal Santan <sonal.santan@xilinx.com>
Signed-off-by: Max Zhen <max.zhen@xilinx.com>
Signed-off-by: Lizhi Hou <lizhi.hou@xilinx.com>
---
Documentation/fpga/index.rst | 1 +
Documentation/fpga/xrt.rst | 510 +++++++++++++++++++++++++++++++++++
MAINTAINERS | 10 +
3 files changed, 521 insertions(+)
create mode 100644 Documentation/fpga/xrt.rst

diff --git a/Documentation/fpga/index.rst b/Documentation/fpga/index.rst
index f80f95667ca2..30134357b70d 100644
--- a/Documentation/fpga/index.rst
+++ b/Documentation/fpga/index.rst
@@ -8,6 +8,7 @@ fpga
:maxdepth: 1

dfl
+ xrt

.. only:: subproject and html

diff --git a/Documentation/fpga/xrt.rst b/Documentation/fpga/xrt.rst
new file mode 100644
index 000000000000..323ded5c0f4a
--- /dev/null
+++ b/Documentation/fpga/xrt.rst
@@ -0,0 +1,510 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==================================
+XRTV2 Linux Kernel Driver Overview
+==================================
+
+Authors:
+
+* Sonal Santan <sonal.santan@xilinx.com>
+* Max Zhen <max.zhen@xilinx.com>
+* Lizhi Hou <lizhi.hou@xilinx.com>
+
+XRTV2 drivers are second generation `XRT <https://github.com/Xilinx/XRT>`_
+drivers which support `Alveo <https://www.xilinx.com/products/boards-and-kits/alveo.html>`_
+PCIe platforms from Xilinx.
+
+XRTV2 drivers support *subsystem* style data driven platforms where driver's
+configuration and behavior are determined by metadata provided by the platform
+(in *device tree* format). Primary management physical function (MPF) driver
+is called **xrt-mgmt**. Primary user physical function (UPF) driver is called
+**xrt-user** and is under development. xrt_driver framework and FPGA subsystem
+drivers are packaged into a library module called **xrt-lib**, which is shared
+by **xrt-mgmt** and **xrt-user** (under development). The xrt_driver framework
+implements a ``bus_type`` called **xrt_bus_type** which is used to discover HW
+subsystems and facilitate inter HW subsystem interaction.
+
+Driver Modules
+==============
+
+xrt-lib.ko
+----------
+
+xrt-lib is the repository of xrt drivers and pure software modules that can
+potentially be shared between xrt-mgmt and xrt-user. All these drivers are
+structured as **xrt_driver** and are instantiated by xrt-mgmt (or xrt-user under
+development) based on the metadata associated with the hardware. The metadata
+is in the form of a device tree as mentioned before.
+
+xrt-lib relies on OF kernel APIs to unflatten the metadata and overlay the
+unflattened device tree nodes to system device tree. In xrt-lib module initialization
+routine, "/xrt-bus" is created in system device tree, all XRT device
+tree nodes and properties will be under "/xrt-bus".
+
+The xrt-lib infrastructure provides hooks to xrt_drivers for device node
+management, user file operations and ioctl callbacks. The core infrastructure also
+provides a bus functionality called **xrt_bus_type** for xrt_driver registration,
+discovery and inter xrt_driver calls. xrt-lib does not have any dependency on PCIe
+subsystem.
+
+xrt-mgmt.ko
+------------
+
+The xrt-mgmt driver is a PCIe device driver driving MPF found on Xilinx's Alveo
+PCIe device. It creates one or more *group* device and one or more *xleaf* device.
+The group and xleaf drivers are in xrt-lib and instantiations of the xrt_driver but
+are called group and xleaf to symbolize the logical operation performed by them.
+
+The xrt-mgmt driver uses xrt-lib APIs to manages the life cycle of multiple group
+drivers, which, in turn, manages multiple xleaf drivers. This flexibility allows
+xrt-mgmt.ko and xrt-lib.ko to support various HW subsystems exposed by different
+Alveo shells. The differences among these Alveo shells is handled in xleaf drivers.
+The group driver is part of the infrastructure which provides common services to xleaf
+drivers found on various Alveo shells. See :ref:`alveo_platform_overview`.
+
+The instantiation of specific group driver or xleaf drivers is completely data
+driven based on metadata (mostly in device tree format) found through VSEC
+capability and inside the firmware files, such as platform xsabin or user xclbin
+file.
+
+
+Driver Object Model
+===================
+
+The driver object model looks like the following::
+
+ +-----------+
+ | of root |
+ +-----+-----+
+ |
+ +---------+---------+
+ | |
+ +-----------+ +----------+
+ | xrt-bus | | ... |
+ +-----+-----+ +----------+
+ |
+ +-----------+-----------+
+ | |
+ v v
+ +-----------+ +-----------+
+ | group | ... | group |
+ +-----+-----+ +------+----+
+ | |
+ | |
+ +-----+----+ +-----+----+
+ | | | |
+ v v v v
+ +-------+ +-------+ +-------+ +-------+
+ | xleaf |..| xleaf | | xleaf |..| xleaf |
+ +-------+ +-------+ +-------+ +-------+
+
+As an example, for Xilinx Alveo U50 before user xclbin download, the tree
+looks like the following::
+
+ +-----------+
+ | xrt-bus |
+ +-----+-----+
+ |
+ +-------------------------+--------------------+
+ | | |
+ v v v
+ +--------+ +--------+ +--------+
+ | group0 | | group1 | | group2 |
+ +----+---+ +----+---+ +---+----+
+ | | |
+ | | |
+ +-----+-----+ +----+-----+---+ +-----+-----+----+--------+
+ | | | | | | | | |
+ v v | v v | v v |
+ +------------+ +------+ | +------+ +------+ | +------+ +-----------+ |
+ | xmgmt_main | | VSEC | | | GPIO | | QSPI | | | CMC | | AXI-GATE0 | |
+ +------------+ +------+ | +------+ +------+ | +------+ +-----------+ |
+ | +---------+ | +------+ +-----------+ |
+ +>| MAILBOX | +->| ICAP | | AXI-GATE1 |<+
+ +---------+ | +------+ +-----------+
+ | +-------+
+ +->| CALIB |
+ +-------+
+
+After a xclbin is downloaded, group3 will be added and the tree looks like the
+following::
+
+ +-----------+
+ | xrt-bus |
+ +-----+-----+
+ |
+ +-------------------------+--------------------+-----------------+
+ | | | |
+ v v v |
+ +--------+ +--------+ +--------+ |
+ | group0 | | group1 | | group2 | |
+ +----+---+ +----+---+ +---+----+ |
+ | | | |
+ | | | |
+ +-----+-----+ +-----+-----+---+ +-----+-----+----+--------+ |
+ | | | | | | | | | |
+ v v | v v | v v | |
+ +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | |
+ | xmgmt_main | | VSEC | | | GPIO | | QSPI | | | CMC | | AXI-GATE0 | | |
+ +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | |
+ | +---------+ | +------+ +-----------+ | |
+ +>| MAILBOX | +->| ICAP | | AXI-GATE1 |<+ |
+ +---------+ | +------+ +-----------+ |
+ | +-------+ |
+ +->| CALIB | |
+ +-------+ |
+ +---+----+ |
+ | group3 |<--------------------------------------------+
+ +--------+
+ |
+ |
+ +-------+--------+---+--+--------+------+-------+
+ | | | | | | |
+ v | v | v | v
+ +--------+ | +--------+ | +--------+ | +-----+
+ | CLOCK0 | | | CLOCK1 | | | CLOCK2 | | | UCS |
+ +--------+ v +--------+ v +--------+ v +-----+
+ +-------------+ +-------------+ +-------------+
+ | CLOCK-FREQ0 | | CLOCK-FREQ1 | | CLOCK-FREQ2 |
+ +-------------+ +-------------+ +-------------+
+
+
+group
+-----
+
+The group driver represents a pseudo device whose life cycle is managed by
+root and does not have real IO mem or IRQ resources. It's part of the
+infrastructure of the MPF driver and resides in xrt-lib.ko. This driver
+
+* manages one or more xleaf drivers
+* handle requests from xleaf drivers. For example event notifications and
+ inter xleaf calls.
+
+In xrt-mgmt, an initial group driver instance will be created by the PCIe driver.
+This instance contains xleaf drivers that will trigger group instances to be
+created to manage groups of xleaf drivers found on different partitions of
+hardware, such as VSEC, Shell, and User.
+
+xleaf
+-----
+
+The xleaf driver is a xrt_driver whose life cycle is managed by
+a group driver and may or may not have real IO mem or IRQ resources. They
+manage HW subsystems they are attached to.
+
+A xleaf driver without real hardware resources manages in-memory states for
+xrt-mgmt. These states are shareable by other xleaf drivers.
+
+Xleaf drivers assigned to specific hardware resources drive a specific subsystem
+in the device. To manipulate the subsystem or carry out a task, a xleaf driver
+may ask for help from the root via root calls and/or from other leaves via
+inter xleaf calls.
+
+A xleaf can also broadcast events through infrastructure code for other leaves
+to process. It can also receive event notification from infrastructure about
+certain events, such as post-creation or pre-exit of a particular xleaf.
+
+xrt_bus_type
+------------
+
+xrt_bus_type defines a virtual bus which handles xrt_driver probe, remove and match
+operations. All xrt_drivers register with xrt_bus_type as part of xrt-lib driver
+``module_init`` and un-register as part of xrt-lib driver ``module_exit``.
+
+FPGA Manager Interaction
+========================
+
+fpga_manager
+------------
+
+An instance of fpga_manager is created by xmgmt_main and is used for xclbin
+image download. fpga_manager requires the full xclbin image before it can
+start programming the FPGA configuration engine via Internal Configuration
+Access Port (ICAP) xrt_driver.
+
+fpga_region
+-----------
+
+For every interface exposed by the currently loaded xclbin/xsabin in the
+*parent* fpga_region a new instance of fpga_region is created like a *child*
+fpga_region. The device tree of the *parent* fpga_region defines the
+resources for a new instance of fpga_bridge which isolates the parent from
+child fpga_region. This new instance of fpga_bridge will be used when a
+xclbin image is loaded on the child fpga_region. After the xclbin image is
+downloaded to the fpga_region, an instance of a group is created for the
+fpga_region using the device tree obtained as part of the xclbin. If this
+device tree defines any child interfaces, it can trigger the creation of
+fpga_bridge and fpga_region for the next region in the chain.
+
+fpga_bridge
+-----------
+
+Like the fpga_region, an fpga_bridge is created by walking the device tree
+of the parent group. The bridge is used for isolation between a parent and
+its child.
+
+Driver Interfaces
+=================
+
+xrt-mgmt Driver Ioctls
+----------------------
+
+Ioctls exposed by the xrt-mgmt driver to user space are enumerated in the
+following table:
+
+== ===================== ============================ ==========================
+# Functionality ioctl request code data format
+== ===================== ============================ ==========================
+1 FPGA image download XMGMT_IOCICAPDOWNLOAD_AXLF xmgmt_ioc_bitstream_axlf
+== ===================== ============================ ==========================
+
+A user xclbin can be downloaded by using the xbmgmt tool from the XRT open source
+suite. See example usage below::
+
+ xbmgmt partition --program --path /lib/firmware/xilinx/862c7020a250293e32036f19956669e5/test/verify.xclbin --force
+
+.. _alveo_platform_overview:
+
+Alveo Platform Overview
+=======================
+
+Alveo platforms are architected as two physical FPGA partitions: *Shell* and
+*User*. The Shell provides basic infrastructure for the Alveo platform like
+PCIe connectivity, board management, Dynamic Function Exchange (DFX), sensors,
+clocking, reset, and security. DFX, partial reconfiguration, is responsible for
+loading the user compiled FPGA binary.
+
+For DFX to work properly, physical partitions require strict HW compatibility
+with each other. Every physical partition has two interface UUIDs: the *parent*
+UUID and the *child* UUID. For simple single stage platforms, Shell → User forms
+the parent child relationship.
+
+.. note::
+ Partition compatibility matching is a key design component of the Alveo platforms
+ and XRT. Partitions have child and parent relationship. A loaded partition
+ exposes child partition UUID to advertise its compatibility requirement. When
+ loading a child partition, the xrt-mgmt driver matches the parent
+ UUID of the child partition against the child UUID exported by the parent.
+ The parent and child partition UUIDs are stored in the *xclbin* (for the user)
+ and the *xsabin* (for the shell). Except for the root UUID exported by VSEC,
+ the hardware itself does not know about the UUIDs. The UUIDs are stored in
+ xsabin and xclbin. The image format has a special node called Partition UUIDs
+ which define the compatibility UUIDs.
+
+
+The physical partitions and their loading are illustrated below::
+
+ SHELL USER
+ +-----------+ +-------------------+
+ | | | |
+ | VSEC UUID | CHILD PARENT | LOGIC UUID |
+ | o------->|<--------o |
+ | | UUID UUID | |
+ +-----+-----+ +--------+----------+
+ | |
+ . .
+ | |
+ +---+---+ +------+--------+
+ | POR | | USER COMPILED |
+ | FLASH | | XCLBIN |
+ +-------+ +---------------+
+
+
+Loading Sequence
+----------------
+
+The Shell partition is loaded from flash at system boot time. It establishes the
+PCIe link and exposes two physical functions to the BIOS. After the OS boots,
+the xrt-mgmt driver attaches to the PCIe physical function 0 exposed by the Shell
+and then looks for VSEC in the PCIe extended configuration space. Using VSEC, it
+determines the logic UUID of the Shell and uses the UUID to load matching *xsabin*
+file from Linux firmware directory. The xsabin file contains the metadata to
+discover the peripherals that are part of the Shell and the firmware for any
+embedded soft processors in the Shell. The xsabin file also contains Partition
+UUIDs.
+
+The Shell exports a child interface UUID which is used for the compatibility
+check when loading the user compiled xclbin over the User partition as part of DFX.
+When a user requests loading of a specific xclbin, the xrt-mgmt driver reads
+the parent interface UUID specified in the xclbin and matches it with the child
+interface UUID exported by the Shell to determine if the xclbin is compatible with
+the Shell. If the match fails, loading of xclbin is denied.
+
+xclbin loading is requested using the ICAP_DOWNLOAD_AXLF ioctl command. When loading
+a xclbin, the xrt-mgmt driver performs the following *logical* operations:
+
+1. Copy xclbin from user to kernel memory
+2. Sanity check the xclbin contents
+3. Isolate the User partition
+4. Download the bitstream using the FPGA config engine (ICAP)
+5. De-isolate the User partition
+6. Program the clocks (ClockWiz) driving the User partition
+7. Wait for the memory controller (MIG) calibration
+8. Return the loading status back to the caller
+
+`Platform Loading Overview <https://xilinx.github.io/XRT/master/html/platforms_partitions.html>`_
+provides more detailed information on platform loading.
+
+
+xsabin
+------
+
+Each Alveo platform comes packaged with its own xsabin. The xsabin is a trusted
+component of the platform. For format details refer to :ref:`xsabin_xclbin_container_format`
+below. xsabin contains basic information like UUIDs, platform name and metadata in the
+form of device tree. See :ref:`device_tree_usage` below for details and example.
+
+xclbin
+------
+
+xclbin is compiled by end user using
+`Vitis <https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html>`_
+tool set from Xilinx. The xclbin contains sections describing user compiled
+acceleration engines/kernels, memory subsystems, clocking information etc. It also
+contains an FPGA bitstream for the user partition, UUIDs, platform name, etc.
+
+
+.. _xsabin_xclbin_container_format:
+
+xsabin/xclbin Container Format
+------------------------------
+
+xclbin/xsabin is ELF-like binary container format. It is structured as series of
+sections. There is a file header followed by several section headers which is
+followed by sections. A section header points to an actual section. There is an
+optional signature at the end. The format is defined by the header file ``xclbin.h``.
+The following figure illustrates a typical xclbin::
+
+
+ +---------------------+
+ | |
+ | HEADER |
+ +---------------------+
+ | SECTION HEADER |
+ | |
+ +---------------------+
+ | ... |
+ | |
+ +---------------------+
+ | SECTION HEADER |
+ | |
+ +---------------------+
+ | SECTION |
+ | |
+ +---------------------+
+ | ... |
+ | |
+ +---------------------+
+ | SECTION |
+ | |
+ +---------------------+
+ | SIGNATURE |
+ | (OPTIONAL) |
+ +---------------------+
+
+
+xclbin/xsabin files can be packaged, un-packaged and inspected using an XRT
+utility called **xclbinutil**. xclbinutil is part of the XRT open source
+software stack. The source code for xclbinutil can be found at
+https://github.com/Xilinx/XRT/tree/master/src/runtime_src/tools/xclbinutil
+
+For example, to enumerate the contents of a xclbin/xsabin use the *--info* switch
+as shown below::
+
+
+ xclbinutil --info --input /opt/xilinx/firmware/u50/gen3x16-xdma/blp/test/bandwidth.xclbin
+ xclbinutil --info --input /lib/firmware/xilinx/862c7020a250293e32036f19956669e5/partition.xsabin
+
+
+.. _device_tree_usage:
+
+Device Tree Usage
+-----------------
+
+The xsabin file stores metadata which advertise HW subsystems present in a
+partition. The metadata is stored in device tree format with a well defined
+schema. XRT management driver uses this information to create *xrt_devices* and
+bind *xrt_drivers* to them. The xrt_drivers could be independent modules or
+found in **xrt-lib.ko** kernel module.
+
+Deployment Models
+=================
+
+Baremetal
+---------
+
+In bare-metal deployments, both MPF and UPF are visible and accessible. The
+xrt-mgmt driver binds to MPF. The xrt-mgmt driver operations are privileged and
+available to system administrator. The full stack is illustrated below::
+
+ HOST
+
+ [XRT-MGMT] [XRT-USER]
+ | |
+ | |
+ +-----+ +-----+
+ | MPF | | UPF |
+ | | | |
+ | PF0 | | PF1 |
+ +--+--+ +--+--+
+ ......... ^................. ^..........
+ | |
+ | PCIe DEVICE |
+ | |
+ +--+------------------+--+
+ | SHELL |
+ | |
+ +------------------------+
+ | USER |
+ | |
+ | |
+ | |
+ | |
+ +------------------------+
+
+
+
+Virtualized
+-----------
+
+In virtualized deployments, the privileged MPF is assigned to the host but the
+unprivileged UPF is assigned to a guest VM via PCIe pass-through. The xrt-mgmt
+driver in host binds to MPF. The xrt-mgmt driver operations are privileged and
+only accessible to the MPF. The full stack is illustrated below::
+
+
+ ..............
+ HOST . VM .
+ . .
+ [XRT-MGMT] . [XRT-USER] .
+ | . | .
+ | . | .
+ +-----+ . +-----+ .
+ | MPF | . | UPF | .
+ | | . | | .
+ | PF0 | . | PF1 | .
+ +--+--+ . +--+--+ .
+ ......... ^................. ^..........
+ | |
+ | PCIe DEVICE |
+ | |
+ +--+------------------+--+
+ | SHELL |
+ | |
+ +------------------------+
+ | USER |
+ | |
+ | |
+ | |
+ | |
+ +------------------------+
+
+
+
+
+
+Platform Security Considerations
+================================
+
+`Security of Alveo Platform <https://xilinx.github.io/XRT/master/html/security.html>`_
+discusses the deployment options and security implications in great detail.
diff --git a/MAINTAINERS b/MAINTAINERS
index 80eebc1d9ed5..fd7053bcfdb0 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -7369,6 +7369,16 @@ F: Documentation/fpga/
F: drivers/fpga/
F: include/linux/fpga/

+FPGA XRT DRIVERS
+M: Lizhi Hou <lizhi.hou@xilinx.com>
+R: Max Zhen <max.zhen@xilinx.com>
+R: Sonal Santan <sonal.santan@xilinx.com>
+L: linux-fpga@vger.kernel.org
+S: Supported
+W: https://github.com/Xilinx/XRT
+F: Documentation/fpga/xrt.rst
+F: drivers/fpga/xrt/
+
FPU EMULATOR
M: Bill Metzenthen <billm@melbpc.org.au>
S: Maintained
--
2.27.0
\
 
 \ /
  Last update: 2021-11-18 22:04    [W:0.159 / U:0.016 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site