lkml.org 
[lkml]   [2021]   [Oct]   [13]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
From
SubjectRe: [PATCH v7 2/6] serial: mvebu-uart: implement UART clock driver for configuring UART base clock
Date
Hello Pali,

> This patch implements a new device driver for controlling UART clocks on
> Marvell Armada 3700 SoC. This device driver is loaded for devices which
> match compatible string "marvell,armada-3700-uart-clock".
>
> There are more pitfalls related to UART clocks. Both UARTs use same base
> clock source. Also divisors for TBG base clock are shared between both
> UARTs and are configured only from UART1 address space. Clocks can be
> enabled / disabled separately for UART1 and UART2, but they are controlled
> only from UART1 address space. Moreover Marvell Armada 3700 Functional
> Specifications has swapped bits for enabling/disabling UART1 and UART2
> clocks.
>
> So driver for controlling UART2 needs to have access to UART1 address space
> as UART1 address space contains some bits exclusively used by UART2 and
> also bits which are shared for both UART1 and UART2.
>
> For changing UART base clock (which controls both UARTs) during boot when
> UART driver is not ready and only early console is active, is not simple
> operation as it is required to also recalculate divisors to not change UART
> baudrate used by early console. So for this operation UART1 clock driver
> needs to access also into address space of UART2 where are registers for
> UART2 divisors.
>
> For these reasons, this new device driver for UART clocks does not use
> ioremap_resource(), but only ioremap() to prevent resource conflicts
> between UART clock driver and UART driver.
>
> Shared between drivers are only two 4-bytes registers: UART Clock Control
> and UART 2 Baud Rate Divisor. Access to these two registers are protected
> by one spinlock to prevent any conflicts. Access is required only during
> probe time, changing baudrate and during suspend/resume.
>
> Hardware can be configured to use one of following clocks as UART base
> clock: TBG-A-P, TBG-B-P, TBG-A-S, TBG-B-S, xtal. Not every clock is usable
> for higher buadrates. In DT node can be specified any subset and kernel
> choose the best one, which still supports required baudrate 9600. For
> smooth boot log output it is needed to specify clock used by early console
> otherwise garbage would be put on UART during probing for UART clock driver
> and transitioning from early console to normal console.
>
> This change is required to enable and configure TBG clock as a base clock
> for UART. TBG clock is required to achieve higher baudrates than
> 230400.

Did you have a review from the clock maintainer for this driver ?

I found it very unusual to have the implementation of a clok driver
inside an uart driver.

Gregory

>
> Signed-off-by: Pali Rohár <pali@kernel.org>
> ---
> drivers/tty/serial/Kconfig | 1 +
> drivers/tty/serial/mvebu-uart.c | 519 +++++++++++++++++++++++++++++++-
> 2 files changed, 518 insertions(+), 2 deletions(-)
>
> diff --git a/drivers/tty/serial/Kconfig b/drivers/tty/serial/Kconfig
> index 131a6a587acd..fe1a54231b19 100644
> --- a/drivers/tty/serial/Kconfig
> +++ b/drivers/tty/serial/Kconfig
> @@ -1444,6 +1444,7 @@ config SERIAL_STM32_CONSOLE
> config SERIAL_MVEBU_UART
> bool "Marvell EBU serial port support"
> depends on ARCH_MVEBU || COMPILE_TEST
> + depends on COMMON_CLK
> select SERIAL_CORE
> help
> This driver is for Marvell EBU SoC's UART. If you have a machine
> diff --git a/drivers/tty/serial/mvebu-uart.c b/drivers/tty/serial/mvebu-uart.c
> index 231de29a6452..f3fb1f3718f2 100644
> --- a/drivers/tty/serial/mvebu-uart.c
> +++ b/drivers/tty/serial/mvebu-uart.c
> @@ -8,12 +8,14 @@
> */
>
> #include <linux/clk.h>
> +#include <linux/clk-provider.h>
> #include <linux/console.h>
> #include <linux/delay.h>
> #include <linux/device.h>
> #include <linux/init.h>
> #include <linux/io.h>
> #include <linux/iopoll.h>
> +#include <linux/math64.h>
> #include <linux/of.h>
> #include <linux/of_address.h>
> #include <linux/of_device.h>
> @@ -68,8 +70,31 @@
> #define STAT_BRK_ERR (STAT_BRK_DET | STAT_FRM_ERR \
> | STAT_PAR_ERR | STAT_OVR_ERR)
>
> +/*
> + * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART
> + * Clock Control register controls UART1 and bit 20 controls UART2. But in
> + * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be a
> + * bug in Marvell documentation. Hence following CLK_DIS macros are swapped.
> + */
> +
> #define UART_BRDV 0x10
> +/* These bits are located in UART1 address space and control UART2 */
> +#define UART2_CLK_DIS BIT(21)
> +/* These bits are located in UART1 address space and control UART1 */
> +#define UART1_CLK_DIS BIT(20)
> +/* These bits are located in UART1 address space and control both UARTs */
> +#define CLK_NO_XTAL BIT(19)
> +#define CLK_TBG_DIV1_SHIFT 15
> +#define CLK_TBG_DIV1_MASK 0x7
> +#define CLK_TBG_DIV1_MAX 6
> +#define CLK_TBG_DIV2_SHIFT 12
> +#define CLK_TBG_DIV2_MASK 0x7
> +#define CLK_TBG_DIV2_MAX 6
> +#define CLK_TBG_SEL_SHIFT 10
> +#define CLK_TBG_SEL_MASK 0x3
> +/* These bits are located in both UARTs address space */
> #define BRDV_BAUD_MASK 0x3FF
> +#define BRDV_BAUD_MAX BRDV_BAUD_MASK
>
> #define UART_OSAMP 0x14
> #define OSAMP_DEFAULT_DIVISOR 16
> @@ -153,6 +178,8 @@ static struct mvebu_uart *to_mvuart(struct uart_port *port)
>
> static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS];
>
> +static DEFINE_SPINLOCK(mvebu_uart_lock);
> +
> /* Core UART Driver Operations */
> static unsigned int mvebu_uart_tx_empty(struct uart_port *port)
> {
> @@ -445,6 +472,7 @@ static void mvebu_uart_shutdown(struct uart_port *port)
> static int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud)
> {
> unsigned int d_divisor, m_divisor;
> + unsigned long flags;
> u32 brdv, osamp;
>
> if (!port->uartclk)
> @@ -463,10 +491,12 @@ static int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud)
> m_divisor = OSAMP_DEFAULT_DIVISOR;
> d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
>
> + spin_lock_irqsave(&mvebu_uart_lock, flags);
> brdv = readl(port->membase + UART_BRDV);
> brdv &= ~BRDV_BAUD_MASK;
> brdv |= d_divisor;
> writel(brdv, port->membase + UART_BRDV);
> + spin_unlock_irqrestore(&mvebu_uart_lock, flags);
>
> osamp = readl(port->membase + UART_OSAMP);
> osamp &= ~OSAMP_DIVISORS_MASK;
> @@ -762,6 +792,7 @@ static int mvebu_uart_suspend(struct device *dev)
> {
> struct mvebu_uart *mvuart = dev_get_drvdata(dev);
> struct uart_port *port = mvuart->port;
> + unsigned long flags;
>
> uart_suspend_port(&mvebu_uart_driver, port);
>
> @@ -770,7 +801,9 @@ static int mvebu_uart_suspend(struct device *dev)
> mvuart->pm_regs.ctrl = readl(port->membase + UART_CTRL(port));
> mvuart->pm_regs.intr = readl(port->membase + UART_INTR(port));
> mvuart->pm_regs.stat = readl(port->membase + UART_STAT);
> + spin_lock_irqsave(&mvebu_uart_lock, flags);
> mvuart->pm_regs.brdv = readl(port->membase + UART_BRDV);
> + spin_unlock_irqrestore(&mvebu_uart_lock, flags);
> mvuart->pm_regs.osamp = readl(port->membase + UART_OSAMP);
>
> device_set_wakeup_enable(dev, true);
> @@ -782,13 +815,16 @@ static int mvebu_uart_resume(struct device *dev)
> {
> struct mvebu_uart *mvuart = dev_get_drvdata(dev);
> struct uart_port *port = mvuart->port;
> + unsigned long flags;
>
> writel(mvuart->pm_regs.rbr, port->membase + UART_RBR(port));
> writel(mvuart->pm_regs.tsh, port->membase + UART_TSH(port));
> writel(mvuart->pm_regs.ctrl, port->membase + UART_CTRL(port));
> writel(mvuart->pm_regs.intr, port->membase + UART_INTR(port));
> writel(mvuart->pm_regs.stat, port->membase + UART_STAT);
> + spin_lock_irqsave(&mvebu_uart_lock, flags);
> writel(mvuart->pm_regs.brdv, port->membase + UART_BRDV);
> + spin_unlock_irqrestore(&mvebu_uart_lock, flags);
> writel(mvuart->pm_regs.osamp, port->membase + UART_OSAMP);
>
> uart_resume_port(&mvebu_uart_driver, port);
> @@ -972,6 +1008,476 @@ static struct platform_driver mvebu_uart_platform_driver = {
> },
> };
>
> +/* This code is based on clk-fixed-factor.c driver and modified. */
> +
> +struct mvebu_uart_clock {
> + struct clk_hw clk_hw;
> + int clock_idx;
> + u32 pm_context_reg1;
> + u32 pm_context_reg2;
> +};
> +
> +struct mvebu_uart_clock_base {
> + struct mvebu_uart_clock clocks[2];
> + unsigned int parent_rates[5];
> + int parent_idx;
> + unsigned int div;
> + void __iomem *reg1;
> + void __iomem *reg2;
> + bool configured;
> +};
> +
> +#define PARENT_CLOCK_XTAL 4
> +
> +#define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw)
> +#define to_uart_clock_base(uart_clock) container_of(uart_clock, \
> + struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx])
> +
> +static int mvebu_uart_clock_prepare(struct clk_hw *hw)
> +{
> + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
> + struct mvebu_uart_clock_base *uart_clock_base =
> + to_uart_clock_base(uart_clock);
> + unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2;
> + unsigned int parent_clock_idx, parent_clock_rate;
> + unsigned long flags;
> + unsigned int d1, d2;
> + u64 divisor;
> + u32 val;
> +
> + /*
> + * This function just reconfigures UART Clock Control register (located
> + * in UART1 address space which controls both UART1 and UART2) to
> + * selected UART base clock and recalculate current UART1/UART2 divisors
> + * in their address spaces, so final baudrate will not be changed by
> + * switching UART base clock. This is required otherwise kernel boot log
> + * stops working. It is needed to ensure that UART baudrate does not
> + * change during this setup. It is one time operation, so based on
> + * "configured" member this function is skipped on second call. Because
> + * this UART Clock Control register (UART_BRDV) is shared between UART1
> + * baudrate function, UART1 clock selector and UART2 clock selector,
> + * every access to UART_BRDV (reg1) needs to be protected by lock.
> + */
> +
> + spin_lock_irqsave(&mvebu_uart_lock, flags);
> +
> + if (uart_clock_base->configured) {
> + spin_unlock_irqrestore(&mvebu_uart_lock, flags);
> + return 0;
> + }
> +
> + parent_clock_idx = uart_clock_base->parent_idx;
> + parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx];
> +
> + val = readl(uart_clock_base->reg1);
> +
> + if (uart_clock_base->div > CLK_TBG_DIV1_MAX) {
> + d1 = CLK_TBG_DIV1_MAX;
> + d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX;
> + } else {
> + d1 = uart_clock_base->div;
> + d2 = 1;
> + }
> +
> + if (val & CLK_NO_XTAL) {
> + prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK;
> + prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK)
> + * ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK);
> + } else {
> + prev_clock_idx = PARENT_CLOCK_XTAL;
> + prev_d1d2 = 1;
> + }
> +
> + /* Note that uart_clock_base->parent_rates[i] may not be available */
> + prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx];
> +
> + /* Recalculate UART1 divisor so UART1 baudrate does not change */
> + if (prev_clock_rate) {
> + divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
> + parent_clock_rate * prev_d1d2,
> + prev_clock_rate * d1 * d2);
> + if (divisor < 1)
> + divisor = 1;
> + else if (divisor > BRDV_BAUD_MAX)
> + divisor = BRDV_BAUD_MAX;
> + val = (val & ~BRDV_BAUD_MASK) | divisor;
> + }
> +
> + if (parent_clock_idx != PARENT_CLOCK_XTAL) {
> + /* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */
> + val |= CLK_NO_XTAL;
> + val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT);
> + val |= d1 << CLK_TBG_DIV1_SHIFT;
> + val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT);
> + val |= d2 << CLK_TBG_DIV2_SHIFT;
> + val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT);
> + val |= parent_clock_idx << CLK_TBG_SEL_SHIFT;
> + } else {
> + /* Use XTAL, TBG bits are then ignored */
> + val &= ~CLK_NO_XTAL;
> + }
> +
> + writel(val, uart_clock_base->reg1);
> +
> + /* Recalculate UART2 divisor so UART2 baudrate does not change */
> + if (prev_clock_rate) {
> + val = readl(uart_clock_base->reg2);
> + divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
> + parent_clock_rate * prev_d1d2,
> + prev_clock_rate * d1 * d2);
> + if (divisor < 1)
> + divisor = 1;
> + else if (divisor > BRDV_BAUD_MAX)
> + divisor = BRDV_BAUD_MAX;
> + val = (val & ~BRDV_BAUD_MASK) | divisor;
> + writel(val, uart_clock_base->reg2);
> + }
> +
> + uart_clock_base->configured = true;
> +
> + spin_unlock_irqrestore(&mvebu_uart_lock, flags);
> +
> + return 0;
> +}
> +
> +static int mvebu_uart_clock_enable(struct clk_hw *hw)
> +{
> + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
> + struct mvebu_uart_clock_base *uart_clock_base =
> + to_uart_clock_base(uart_clock);
> + unsigned long flags;
> + u32 val;
> +
> + spin_lock_irqsave(&mvebu_uart_lock, flags);
> +
> + val = readl(uart_clock_base->reg1);
> +
> + if (uart_clock->clock_idx == 0)
> + val &= ~UART1_CLK_DIS;
> + else
> + val &= ~UART2_CLK_DIS;
> +
> + writel(val, uart_clock_base->reg1);
> +
> + spin_unlock_irqrestore(&mvebu_uart_lock, flags);
> +
> + return 0;
> +}
> +
> +static void mvebu_uart_clock_disable(struct clk_hw *hw)
> +{
> + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
> + struct mvebu_uart_clock_base *uart_clock_base =
> + to_uart_clock_base(uart_clock);
> + unsigned long flags;
> + u32 val;
> +
> + spin_lock_irqsave(&mvebu_uart_lock, flags);
> +
> + val = readl(uart_clock_base->reg1);
> +
> + if (uart_clock->clock_idx == 0)
> + val |= UART1_CLK_DIS;
> + else
> + val |= UART2_CLK_DIS;
> +
> + writel(val, uart_clock_base->reg1);
> +
> + spin_unlock_irqrestore(&mvebu_uart_lock, flags);
> +}
> +
> +static int mvebu_uart_clock_is_enabled(struct clk_hw *hw)
> +{
> + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
> + struct mvebu_uart_clock_base *uart_clock_base =
> + to_uart_clock_base(uart_clock);
> + u32 val;
> +
> + val = readl(uart_clock_base->reg1);
> +
> + if (uart_clock->clock_idx == 0)
> + return !(val & UART1_CLK_DIS);
> + else
> + return !(val & UART2_CLK_DIS);
> +}
> +
> +static int mvebu_uart_clock_save_context(struct clk_hw *hw)
> +{
> + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
> + struct mvebu_uart_clock_base *uart_clock_base =
> + to_uart_clock_base(uart_clock);
> + unsigned long flags;
> +
> + spin_lock_irqsave(&mvebu_uart_lock, flags);
> + uart_clock->pm_context_reg1 = readl(uart_clock_base->reg1);
> + uart_clock->pm_context_reg2 = readl(uart_clock_base->reg2);
> + spin_unlock_irqrestore(&mvebu_uart_lock, flags);
> +
> + return 0;
> +}
> +
> +static void mvebu_uart_clock_restore_context(struct clk_hw *hw)
> +{
> + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
> + struct mvebu_uart_clock_base *uart_clock_base =
> + to_uart_clock_base(uart_clock);
> + unsigned long flags;
> +
> + spin_lock_irqsave(&mvebu_uart_lock, flags);
> + writel(uart_clock->pm_context_reg1, uart_clock_base->reg1);
> + writel(uart_clock->pm_context_reg2, uart_clock_base->reg2);
> + spin_unlock_irqrestore(&mvebu_uart_lock, flags);
> +}
> +
> +static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw,
> + unsigned long parent_rate)
> +{
> + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
> + struct mvebu_uart_clock_base *uart_clock_base =
> + to_uart_clock_base(uart_clock);
> +
> + return parent_rate / uart_clock_base->div;
> +}
> +
> +static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate,
> + unsigned long *parent_rate)
> +{
> + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
> + struct mvebu_uart_clock_base *uart_clock_base =
> + to_uart_clock_base(uart_clock);
> +
> + return *parent_rate / uart_clock_base->div;
> +}
> +
> +static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate,
> + unsigned long parent_rate)
> +{
> + /*
> + * We must report success but we can do so unconditionally because
> + * mvebu_uart_clock_round_rate returns values that ensure this call is a
> + * nop.
> + */
> +
> + return 0;
> +}
> +
> +static const struct clk_ops mvebu_uart_clock_ops = {
> + .prepare = mvebu_uart_clock_prepare,
> + .enable = mvebu_uart_clock_enable,
> + .disable = mvebu_uart_clock_disable,
> + .is_enabled = mvebu_uart_clock_is_enabled,
> + .save_context = mvebu_uart_clock_save_context,
> + .restore_context = mvebu_uart_clock_restore_context,
> + .round_rate = mvebu_uart_clock_round_rate,
> + .set_rate = mvebu_uart_clock_set_rate,
> + .recalc_rate = mvebu_uart_clock_recalc_rate,
> +};
> +
> +static int mvebu_uart_clock_register(struct device *dev,
> + struct mvebu_uart_clock *uart_clock,
> + const char *name,
> + const char *parent_name)
> +{
> + struct clk_init_data init = { };
> +
> + uart_clock->clk_hw.init = &init;
> +
> + init.name = name;
> + init.ops = &mvebu_uart_clock_ops;
> + init.flags = 0;
> + init.num_parents = 1;
> + init.parent_names = &parent_name;
> +
> + return devm_clk_hw_register(dev, &uart_clock->clk_hw);
> +}
> +
> +static int mvebu_uart_clock_probe(struct platform_device *pdev)
> +{
> + static const char *const uart_clk_names[] = { "uart_1", "uart_2" };
> + static const char *const parent_clk_names[] = { "TBG-A-P", "TBG-B-P",
> + "TBG-A-S", "TBG-B-S",
> + "xtal" };
> + struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)];
> + struct mvebu_uart_clock_base *uart_clock_base;
> + struct clk_hw_onecell_data *hw_clk_data;
> + struct device *dev = &pdev->dev;
> + int i, parent_clk_idx, ret;
> + unsigned long div, rate;
> + struct resource *res;
> + unsigned int d1, d2;
> +
> + BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) !=
> + ARRAY_SIZE(uart_clock_base->clocks));
> + BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) !=
> + ARRAY_SIZE(uart_clock_base->parent_rates));
> +
> + uart_clock_base = devm_kzalloc(dev,
> + sizeof(*uart_clock_base),
> + GFP_KERNEL);
> + if (!uart_clock_base)
> + return -ENOMEM;
> +
> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + if (!res) {
> + dev_err(dev, "Couldn't get first register\n");
> + return -ENOENT;
> + }
> +
> + /*
> + * UART Clock Control register (reg1 / UART_BRDV) is in address range
> + * of UART1 (standard UART variant), controls clock source and dividers
> + * for both UART1 and UART2 and is supplied via DT as first resource.
> + * Therefore use ioremap() function rather than ioremap_resource() to
> + * avoid conflicts with UART1 driver. Access to UART_BRDV is protected
> + * by lock shared between clock and UART driver.
> + */
> + uart_clock_base->reg1 = devm_ioremap(dev, res->start,
> + resource_size(res));
> + if (IS_ERR(uart_clock_base->reg1))
> + return PTR_ERR(uart_clock_base->reg1);
> +
> + res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
> + if (!res) {
> + dev_err(dev, "Couldn't get second register\n");
> + return -ENOENT;
> + }
> +
> + /*
> + * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address
> + * range of UART2 (extended UART variant), controls only one UART2
> + * specific divider and is supplied via DT as second resource.
> + * Therefore use ioremap() function rather than ioremap_resource() to
> + * avoid conflicts with UART2 driver. Access to UART_BRDV is protected
> + * by lock shared between clock and UART driver.
> + */
> + uart_clock_base->reg2 = devm_ioremap(dev, res->start,
> + resource_size(res));
> + if (IS_ERR(uart_clock_base->reg2))
> + return PTR_ERR(uart_clock_base->reg2);
> +
> + hw_clk_data = devm_kzalloc(dev,
> + struct_size(hw_clk_data, hws,
> + ARRAY_SIZE(uart_clk_names)),
> + GFP_KERNEL);
> + if (!hw_clk_data)
> + return -ENOMEM;
> +
> + hw_clk_data->num = ARRAY_SIZE(uart_clk_names);
> + for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
> + hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw;
> + uart_clock_base->clocks[i].clock_idx = i;
> + }
> +
> + parent_clk_idx = -1;
> +
> + for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
> + parent_clks[i] = devm_clk_get(dev, parent_clk_names[i]);
> + if (IS_ERR(parent_clks[i])) {
> + if (PTR_ERR(parent_clks[i]) == -EPROBE_DEFER)
> + return -EPROBE_DEFER;
> + dev_warn(dev, "Couldn't get the parent clock %s: %ld\n",
> + parent_clk_names[i], PTR_ERR(parent_clks[i]));
> + continue;
> + }
> +
> + ret = clk_prepare_enable(parent_clks[i]);
> + if (ret) {
> + dev_warn(dev, "Couldn't enable parent clock %s: %d\n",
> + parent_clk_names[i], ret);
> + continue;
> + }
> + rate = clk_get_rate(parent_clks[i]);
> + uart_clock_base->parent_rates[i] = rate;
> +
> + if (i != PARENT_CLOCK_XTAL) {
> + /*
> + * Calculate the smallest TBG d1 and d2 divisors that
> + * still can provide 9600 baudrate.
> + */
> + d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_DEFAULT_DIVISOR *
> + BRDV_BAUD_MAX);
> + if (d1 < 1)
> + d1 = 1;
> + else if (d1 > CLK_TBG_DIV1_MAX)
> + d1 = CLK_TBG_DIV1_MAX;
> +
> + d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_DEFAULT_DIVISOR *
> + BRDV_BAUD_MAX * d1);
> + if (d2 < 1)
> + d2 = 1;
> + else if (d2 > CLK_TBG_DIV2_MAX)
> + d2 = CLK_TBG_DIV2_MAX;
> + } else {
> + /*
> + * When UART clock uses XTAL clock as a source then it
> + * is not possible to use d1 and d2 divisors.
> + */
> + d1 = d2 = 1;
> + }
> +
> + /* Skip clock source which cannot provide 9600 baudrate */
> + if (rate > 9600 * OSAMP_DEFAULT_DIVISOR * BRDV_BAUD_MAX * d1 * d2)
> + continue;
> +
> + /*
> + * Choose TBG clock source with the smallest divisors. Use XTAL
> + * clock source only in case TBG is not available as XTAL cannot
> + * be used for baudrates higher than 230400.
> + */
> + if (parent_clk_idx == -1 ||
> + (i != PARENT_CLOCK_XTAL && div > d1 * d2)) {
> + parent_clk_idx = i;
> + div = d1 * d2;
> + }
> + }
> +
> + for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
> + if (i == parent_clk_idx || IS_ERR(parent_clks[i]))
> + continue;
> + clk_disable_unprepare(parent_clks[i]);
> + devm_clk_put(dev, parent_clks[i]);
> + }
> +
> + if (parent_clk_idx == -1) {
> + dev_err(dev, "No usable parent clock\n");
> + return -ENOENT;
> + }
> +
> + uart_clock_base->parent_idx = parent_clk_idx;
> + uart_clock_base->div = div;
> +
> + dev_notice(dev, "Using parent clock %s as base UART clock\n",
> + __clk_get_name(parent_clks[parent_clk_idx]));
> +
> + for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
> + ret = mvebu_uart_clock_register(dev,
> + &uart_clock_base->clocks[i],
> + uart_clk_names[i],
> + __clk_get_name(parent_clks[parent_clk_idx]));
> + if (ret) {
> + dev_err(dev, "Can't register UART clock %d: %d\n",
> + i, ret);
> + return ret;
> + }
> + }
> +
> + return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
> + hw_clk_data);
> +}
> +
> +static const struct of_device_id mvebu_uart_clock_of_match[] = {
> + { .compatible = "marvell,armada-3700-uart-clock", },
> + { }
> +};
> +
> +static struct platform_driver mvebu_uart_clock_platform_driver = {
> + .probe = mvebu_uart_clock_probe,
> + .driver = {
> + .name = "mvebu-uart-clock",
> + .of_match_table = mvebu_uart_clock_of_match,
> + },
> +};
> +
> static int __init mvebu_uart_init(void)
> {
> int ret;
> @@ -980,10 +1486,19 @@ static int __init mvebu_uart_init(void)
> if (ret)
> return ret;
>
> + ret = platform_driver_register(&mvebu_uart_clock_platform_driver);
> + if (ret) {
> + uart_unregister_driver(&mvebu_uart_driver);
> + return ret;
> + }
> +
> ret = platform_driver_register(&mvebu_uart_platform_driver);
> - if (ret)
> + if (ret) {
> + platform_driver_unregister(&mvebu_uart_clock_platform_driver);
> uart_unregister_driver(&mvebu_uart_driver);
> + return ret;
> + }
>
> - return ret;
> + return 0;
> }
> arch_initcall(mvebu_uart_init);
> --
> 2.20.1
>

--
Gregory Clement, Bootlin
Embedded Linux and Kernel engineering
http://bootlin.com

\
 
 \ /
  Last update: 2021-10-13 16:18    [W:0.784 / U:0.152 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site