lkml.org 
[lkml]   [2020]   [Jun]   [9]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH v6 2/8] mtd: rawnand: rockchip: NFC drivers for RK3308, RK2928 and others
Date
This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308,
RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using
8-bit NAND interface on the ARM based RK3308 platform.

Support Rockchip SoCs and NFC versions:
- PX30 and RK3326(NFCv900).
ECC: 16/40/60/70 bits/1KB.
CLOCK: ahb and nfc.
- RK3308 and RV1108(NFCv800).
ECC: 16 bits/1KB.
CLOCK: ahb and nfc.
- RK3036 and RK3128(NFCv622).
ECC: 16/24/40/60 bits/1KB.
CLOCK: ahb and nfc.
- RK3066, RK3188 and RK2928(NFCv600).
ECC: 16/24/40/60 bits/1KB.
CLOCK: ahb.

Support feature:
- Read full page data by DMA.
- Support HW ECC(one step is 1KB).
- Support 2 - 32K page size.
- Support 4 CS(depend on Soc)

Limitations:
- Unsupport 512B ecc step.
- Raw page read and write without ecc redundancy code. So could not support
raw data dump and restore.
- Untested on some SOCs.
- Unsupport subpage.
- Unsupport randomizer.
- The original bad block mask is not supported. It is recommended to use
the BBT(bad block table).

Signed-off-by: Yifeng Zhao <yifeng.zhao@rock-chips.com>
---

Changes in v6:
- The mtd->name set by NAND label property.
- Add some comments.
- Fix compile error.

Changes in v5:
- Add boot blocks support with different ecc for bootrom.
- Rename rockchip-nand.c to rockchip-nand-controller.c.
- Unification of other variable names.
- Remove some compatible define.

Changes in v4:
- Define platform data structure for the register offsets.
- The compatible define with rkxx_nfc.
- Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS.
- Use exec_op instead of legacy hooks.

Changes in v3: None
Changes in v2:
- Fix compile error.
- Include header files sorted by file name.

drivers/mtd/nand/raw/Kconfig | 21 +
drivers/mtd/nand/raw/Makefile | 1 +
.../mtd/nand/raw/rockchip-nand-controller.c | 1393 +++++++++++++++++
3 files changed, 1415 insertions(+)
create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c

diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index a80a46bb5b8b..59e6e2a48ab9 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -433,6 +433,27 @@ config MTD_NAND_MESON
Enables support for NAND controller on Amlogic's Meson SoCs.
This controller is found on Meson SoCs.

+config MTD_NAND_ROCKCHIP
+ tristate "Rockchip NAND controller"
+ depends on ARCH_ROCKCHIP || COMPILE_TEST
+ depends on HAS_IOMEM
+ help
+ Enables support for NAND controller on Rockchip SoCs.
+ There are four different versions of NAND FLASH Controllers,
+ including:
+ - PX30 and RK3326(NFCv900).
+ ECC: 16/40/60/70 bits/1KB.
+ CLOCK: ahb and nfc.
+ - RK3308 and RV1108(NFCv800).
+ ECC: 16 bits/1KB.
+ CLOCK: ahb and nfc.
+ - RK3036 and RK3128(NFCv622).
+ ECC: 16/24/40/60 bits/1KB.
+ CLOCK: ahb and nfc.
+ - RK3066, RK3188 and RK2928(NFCv600).
+ ECC: 16/24/40/60 bits/1KB.
+ CLOCK: ahb.
+
config MTD_NAND_GPIO
tristate "GPIO assisted NAND controller"
depends on GPIOLIB || COMPILE_TEST
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index 2d136b158fb7..a54aa85f49b1 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o
obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o
obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o
+obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o

nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c b/drivers/mtd/nand/raw/rockchip-nand-controller.c
new file mode 100644
index 000000000000..3d6cbca3565a
--- /dev/null
+++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c
@@ -0,0 +1,1393 @@
+// SPDX-License-Identifier: GPL-2.0 OR MIT
+/*
+ * Rockchip NAND Flash controller driver.
+ * Copyright (C) 2020 Rockchip Inc.
+ * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+
+/*
+ * NFC Page Data Layout:
+ * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
+ * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
+ * ......
+ * NAND Page Data Layout:
+ * 1024 * n Data + m Bytes oob
+ * Original Bad Block Mask Location:
+ * First byte of oob(spare).
+ * nand_chip->oob_poi data layout:
+ * 4Bytes sys data + .... + 4Bytes sys data + ecc data.
+ */
+
+/* NAND controller register definition */
+#define NFC_READ (0)
+#define NFC_WRITE (1)
+#define NFC_FMCTL (0x00)
+#define FMCTL_CE_SEL_M 0xFF
+#define FMCTL_CE_SEL(x) (1 << (x))
+#define FMCTL_WP BIT(8)
+#define FMCTL_RDY BIT(9)
+#define NFC_FMWAIT (0x04)
+#define FLCTL_RST BIT(0)
+#define FLCTL_WR (1) /* 0: read, 1: write */
+#define FLCTL_XFER_ST BIT(2)
+#define FLCTL_XFER_EN BIT(3)
+#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
+#define FLCTL_XFER_READY BIT(20)
+#define FLCTL_XFER_SECTOR (22)
+#define FLCTL_TOG_FIX BIT(29)
+#define BCHCTL_BANK_M (7 << 5)
+#define BCHCTL_BANK (5)
+#define DMA_ST BIT(0)
+#define DMA_WR (1) /* 0: write, 1: read */
+#define DMA_EN BIT(2)
+#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
+#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
+#define DMA_INC_NUM (9) /* 1 - 16 */
+#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) \
+ | (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
+#define INT_DMA BIT(0)
+#define NFC_BANK (0x800)
+#define NFC_BANK_STEP (0x100)
+#define BANK_DATA (0x00)
+#define BANK_ADDR (0x04)
+#define BANK_CMD (0x08)
+#define NFC_SRAM0 (0x1000)
+#define NFC_SRAM1 (0x1400)
+#define NFC_SRAM_SIZE (0x400)
+#define NFC_TIMEOUT (500000)
+#define NFC_MAX_OOB_PER_STEP 128
+#define NFC_MIN_OOB_PER_STEP 64
+#define MAX_DATA_SIZE 0xFFFC
+#define MAX_ADDRESS_CYC 6
+#define NFC_ECC_MAX_MODES 4
+#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
+#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
+#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
+#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
+
+enum nfc_type {
+ NFC_V6,
+ NFC_V8,
+ NFC_V9,
+};
+
+/**
+ * struct rk_ecc_cnt_status: represent a ecc status data.
+ * @err_flag_bit: error flag bit index at register.
+ * @low: ecc count low bit index at register.
+ * @low_mask: mask bit.
+ * @low_bn: ecc count low bit number.
+ * @high: ecc count high bit index at register.
+ * @high_mask: mask bit
+ */
+struct ecc_cnt_status {
+ u8 err_flag_bit;
+ u8 low;
+ u8 low_mask;
+ u8 low_bn;
+ u8 high;
+ u8 high_mask;
+};
+
+/**
+ * @type: nfc version
+ * @ecc_strengths: ecc strengths
+ * @ecc_cfgs: ecc config values
+ * @flctl_off: FLCTL register offset
+ * @bchctl_off: BCHCTL register offset
+ * @dma_data_buf_off: DMA_DATA_BUF register offset
+ * @dma_oob_buf_off: DMA_OOB_BUF register offset
+ * @dma_cfg_off: DMA_CFG register offset
+ * @dma_st_off: DMA_ST register offset
+ * @bch_st_off: BCG_ST register offset
+ * @randmz_off: RANDMZ register offset
+ * @int_en_off: interrupt enable register offset
+ * @int_clr_off: interrupt clean register offset
+ * @int_st_off: interrupt status register offset
+ * @oob0_off: oob0 register offset
+ * @oob1_off: oob1 register offset
+ * @ecc0: represent ECC0 status data
+ * @ecc1: represent ECC1 status data
+ */
+struct nfc_cfg {
+ enum nfc_type type;
+ u8 ecc_strengths[NFC_ECC_MAX_MODES];
+ u32 ecc_cfgs[NFC_ECC_MAX_MODES];
+ u32 flctl_off;
+ u32 bchctl_off;
+ u32 dma_cfg_off;
+ u32 dma_data_buf_off;
+ u32 dma_oob_buf_off;
+ u32 dma_st_off;
+ u32 bch_st_off;
+ u32 randmz_off;
+ u32 int_en_off;
+ u32 int_clr_off;
+ u32 int_st_off;
+ u32 oob0_off;
+ u32 oob1_off;
+ struct ecc_cnt_status ecc0;
+ struct ecc_cnt_status ecc1;
+};
+
+struct rk_nfc_nand_chip {
+ struct list_head node;
+ struct nand_chip chip;
+
+ u32 spare_per_sector;
+ u32 oob_buf_per_sector;
+ u32 boot_blks;
+ u32 boot_ecc;
+
+ int nsels;
+ u8 sels[0];
+ /* Nothing after this field. */
+};
+
+struct rk_nfc_clk {
+ int nfc_rate;
+ struct clk *nfc_clk;
+ struct clk *ahb_clk;
+};
+
+struct rk_nfc {
+ struct nand_controller controller;
+ struct rk_nfc_clk clk;
+
+ struct device *dev;
+ const struct nfc_cfg *cfg;
+ void __iomem *regs;
+
+ int selected_bank;
+ int band_offset;
+
+ struct completion done;
+ struct list_head chips;
+
+ u8 *buffer;
+ u8 *page_buf;
+ u32 *oob_buf;
+
+ unsigned long assigned_cs;
+};
+
+static inline struct rk_nfc_nand_chip *to_rk_nand(struct nand_chip *chip)
+{
+ return container_of(chip, struct rk_nfc_nand_chip, chip);
+}
+
+static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
+{
+ return (u8 *)p + i * chip->ecc.size;
+}
+
+static inline u8 *oob_ptr(struct nand_chip *chip, int i)
+{
+ u8 *poi;
+
+ poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
+
+ return poi;
+}
+
+static inline int rk_data_len(struct nand_chip *chip)
+{
+ struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip);
+
+ return chip->ecc.size + rk_nand->spare_per_sector;
+}
+
+static inline u8 *rk_data_ptr(struct nand_chip *chip, int i)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+ return nfc->buffer + i * rk_data_len(chip);
+}
+
+static inline u8 *rk_oob_ptr(struct nand_chip *chip, int i)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+ return nfc->buffer + i * rk_data_len(chip) + chip->ecc.size;
+}
+
+static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip);
+ u32 val;
+
+ if (cs < 0) {
+ nfc->selected_bank = -1;
+ /* Deselect the currently selected target. */
+ val = readl_relaxed(nfc->regs + NFC_FMCTL);
+ val &= ~FMCTL_CE_SEL_M;
+ writel(val, nfc->regs + NFC_FMCTL);
+ return;
+ }
+
+ nfc->selected_bank = rk_nand->sels[cs];
+ nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
+
+ val = readl_relaxed(nfc->regs + NFC_FMCTL);
+ val &= ~FMCTL_CE_SEL_M;
+ val |= FMCTL_CE_SEL(nfc->selected_bank);
+
+ writel(val, nfc->regs + NFC_FMCTL);
+}
+
+static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
+{
+ int rc;
+ u32 val;
+
+ rc = readl_poll_timeout_atomic(nfc->regs + NFC_FMCTL, val,
+ val & FMCTL_RDY, 10, NFC_TIMEOUT);
+
+ return rc;
+}
+
+static inline u8 rk_nfc_read_byte(struct nand_chip *chip)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+ return readb_relaxed(nfc->regs + nfc->band_offset + BANK_DATA);
+}
+
+static void rk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ buf[i] = rk_nfc_read_byte(chip);
+}
+
+static void rk_nfc_write_byte(struct nand_chip *chip, u8 byte)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+ writeb(byte, nfc->regs + nfc->band_offset + BANK_DATA);
+}
+
+static void rk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ rk_nfc_write_byte(chip, buf[i]);
+}
+
+static int rk_nfc_cmd(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ unsigned int i, j, remaining, start;
+ int reg_offset = nfc->band_offset;
+ void __iomem *data_reg;
+ u8 *inbuf = NULL;
+ const u8 *outbuf;
+ u32 cnt = 0;
+ int ret = 0;
+
+
+ for (i = 0; i < subop->ninstrs; i++) {
+ const struct nand_op_instr *instr = &subop->instrs[i];
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ writeb(instr->ctx.cmd.opcode,
+ nfc->regs + reg_offset + BANK_CMD);
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ remaining = nand_subop_get_num_addr_cyc(subop, i);
+ start = nand_subop_get_addr_start_off(subop, i);
+
+ for (j = 0; j < 8 && j + start < remaining; j++)
+ writeb(instr->ctx.addr.addrs[j + start],
+ nfc->regs + reg_offset + BANK_ADDR);
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ case NAND_OP_DATA_OUT_INSTR:
+ start = nand_subop_get_data_start_off(subop, i);
+ cnt = nand_subop_get_data_len(subop, i);
+ data_reg = nfc->regs + nfc->band_offset + BANK_DATA;
+
+ if (instr->type == NAND_OP_DATA_OUT_INSTR) {
+ outbuf = instr->ctx.data.buf.out + start;
+ for (j = 0; j < cnt; j++)
+ writeb(outbuf[j], data_reg);
+ } else {
+ inbuf = instr->ctx.data.buf.in + start;
+ for (j = 0; j < cnt; j++)
+ inbuf[j] = readb_relaxed(data_reg);
+ }
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ if (rk_nfc_wait_ioready(nfc) < 0) {
+ ret = -ETIMEDOUT;
+ dev_err(nfc->dev, "IO not ready\n");
+ }
+ break;
+ }
+ }
+
+ return ret;
+}
+
+static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
+ NAND_OP_PARSER_PATTERN(
+ rk_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ rk_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+);
+
+static int rk_nfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ rk_nfc_select_chip(chip, op->cs);
+ return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
+ check_only);
+}
+
+static int rk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
+ const struct nand_data_interface *conf)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ const struct nand_sdr_timings *timings;
+ u32 rate, tc2rw, trwpw, trw2c;
+ u32 temp;
+
+ if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+ return 0;
+
+ /* Not onfi nand flash. */
+ if (!chip->parameters.onfi)
+ return 0;
+
+ timings = nand_get_sdr_timings(conf);
+ if (IS_ERR(timings))
+ return -ENOTSUPP;
+
+ if (IS_ERR(nfc->clk.nfc_clk))
+ rate = clk_get_rate(nfc->clk.ahb_clk);
+ else
+ rate = clk_get_rate(nfc->clk.nfc_clk);
+
+ /* Turn clock rate into KHz. */
+ rate /= 1000;
+
+ tc2rw = 1;
+ trw2c = 1;
+
+ trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
+ trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
+
+ temp = timings->tREA_max / 1000;
+ temp = DIV_ROUND_UP(temp * rate, 1000000);
+
+ if (trwpw < temp)
+ trwpw = temp;
+
+ /*
+ * ACCON: access timing control register
+ * -------------------------------------
+ * 31:18: reserved
+ * 17:12: csrw, clock cycles from the falling edge of CSn to the
+ falling edge of RDn or WRn
+ * 11:11: reserved
+ * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
+ * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
+ rising edge of CSn
+ */
+ temp = ACCTIMING(tc2rw, trwpw, trw2c);
+ writel(temp, nfc->regs + NFC_FMWAIT);
+
+ return 0;
+}
+
+static int rk_nfc_hw_ecc_setup(struct nand_chip *chip,
+ struct nand_ecc_ctrl *ecc,
+ uint32_t strength)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ u32 reg, i;
+
+ for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
+ if (ecc->strength == nfc->cfg->ecc_strengths[i]) {
+ reg = nfc->cfg->ecc_cfgs[i];
+ break;
+ }
+ }
+
+ if (i >= NFC_ECC_MAX_MODES)
+ return -EINVAL;
+
+ writel(reg, nfc->regs + nfc->cfg->bchctl_off);
+
+ return 0;
+}
+
+static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
+ dma_addr_t dma_data, dma_addr_t dma_oob)
+{
+ u32 dma_reg, fl_reg, bch_reg;
+
+ dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
+ (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
+
+ fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
+ (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
+
+ if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
+ bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
+ bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
+ (nfc->selected_bank << BCHCTL_BANK);
+ writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
+ }
+
+ writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
+ writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
+ writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
+ writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
+ fl_reg |= FLCTL_XFER_ST;
+ writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
+}
+
+static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
+{
+ void __iomem *ptr;
+ int ret = 0;
+ u32 reg;
+
+ ptr = nfc->regs + nfc->cfg->flctl_off;
+
+ ret = readl_poll_timeout_atomic(ptr, reg,
+ reg & FLCTL_XFER_READY,
+ 10, NFC_TIMEOUT);
+
+ return ret;
+}
+
+static int rk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const u8 *buf, int page, int raw)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
+ NFC_MIN_OOB_PER_STEP;
+ int pages_per_blk = mtd->erasesize / mtd->writesize;
+ int ret = 0, i, boot_rom_mode = 0;
+ dma_addr_t dma_data, dma_oob;
+ u32 reg;
+ u8 *oob;
+
+ nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+ if (!raw) {
+ memcpy(nfc->page_buf, buf, mtd->writesize);
+ memset(nfc->oob_buf, 0xff, oob_step * ecc->steps);
+
+ /*
+ * The first 8(some devices are 4 or 16) blocks in use by
+ * the boot ROM and the first 32 bits of oob need to link
+ * to the next page address in the same block.
+ * Config the ECC algorithm supported by the boot ROM.
+ */
+ if (page < pages_per_blk * rk_nand->boot_blks &&
+ chip->options & NAND_IS_BOOT_MEDIUM) {
+ boot_rom_mode = 1;
+ if (rk_nand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc,
+ rk_nand->boot_ecc);
+ }
+
+ /*
+ * Swap the first oob with the seventh oob and bad block
+ * mask is saved at the seventh oob.
+ */
+ swap(chip->oob_poi[0], chip->oob_poi[7]);
+
+ for (i = 0; i < ecc->steps; i++) {
+ oob = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
+ reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
+ oob[3] << 24;
+ if (!i && boot_rom_mode)
+ reg = (page & (pages_per_blk - 1)) * 4;
+
+ if (nfc->cfg->type == NFC_V6 ||
+ nfc->cfg->type == NFC_V8)
+ nfc->oob_buf[i * oob_step / 4] = reg;
+ else
+ nfc->oob_buf[i] = reg;
+ }
+
+ dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
+ mtd->writesize, DMA_TO_DEVICE);
+ dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
+ ecc->steps * oob_step,
+ DMA_TO_DEVICE);
+
+ reinit_completion(&nfc->done);
+ writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
+
+ rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
+ dma_oob);
+ ret = wait_for_completion_timeout(&nfc->done,
+ msecs_to_jiffies(100));
+ if (!ret)
+ dev_warn(nfc->dev, "write: wait dma done timeout.\n");
+ /*
+ * Whether the DMA transfer is completed or not. The driver
+ * needs to check the NFC`s status register to see if the data
+ * transfer was completed.
+ */
+ ret = rk_nfc_wait_for_xfer_done(nfc);
+
+ dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
+ DMA_TO_DEVICE);
+ dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
+ DMA_TO_DEVICE);
+
+ if (boot_rom_mode && rk_nand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
+
+ if (ret) {
+ ret = -EIO;
+ dev_err(nfc->dev,
+ "write: wait transfer done timeout.\n");
+ }
+ } else {
+ rk_nfc_write_buf(chip, buf, mtd->writesize + + mtd->oobsize);
+ }
+
+ if (ret)
+ return ret;
+
+ ret = nand_prog_page_end_op(chip);
+
+ /* Deselect the currently selected target. */
+ rk_nfc_select_chip(chip, -1);
+
+ return ret;
+}
+
+static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
+ int oob_on, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ u32 i;
+
+ memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
+ swap(chip->oob_poi[0], chip->oob_poi[7]);
+ for (i = 0; i < chip->ecc.steps; i++) {
+ if (buf)
+ memcpy(rk_data_ptr(chip, i), data_ptr(chip, buf, i),
+ chip->ecc.size);
+
+ memcpy(rk_oob_ptr(chip, i), oob_ptr(chip, i),
+ NFC_SYS_DATA_SIZE);
+ }
+
+ return rk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
+}
+
+static int rk_nfc_write_oob_std(struct nand_chip *chip, int page)
+{
+ return rk_nfc_write_page_raw(chip, NULL, 1, page);
+}
+
+static int rk_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ u32 data_offs, u32 readlen,
+ u8 *buf, int page, int raw)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
+ NFC_MIN_OOB_PER_STEP;
+ int pages_per_blk = mtd->erasesize / mtd->writesize;
+ dma_addr_t dma_data, dma_oob;
+ int ret = 0, i, boot_rom_mode = 0;
+ int bitflips = 0, bch_st;
+ u8 *oob;
+ u32 tmp;
+
+ nand_read_page_op(chip, page, 0, NULL, 0);
+ if (!raw) {
+ dma_data = dma_map_single(nfc->dev, nfc->page_buf,
+ mtd->writesize,
+ DMA_FROM_DEVICE);
+ dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
+ ecc->steps * oob_step,
+ DMA_FROM_DEVICE);
+
+ /*
+ * The first 8(some devices are 4 or 16) blocks in use by
+ * the bootrom.
+ * Config the ECC algorithm supported by the boot ROM.
+ */
+ if (page < pages_per_blk * rk_nand->boot_blks &&
+ chip->options & NAND_IS_BOOT_MEDIUM) {
+ boot_rom_mode = 1;
+ if (rk_nand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc,
+ rk_nand->boot_ecc);
+ }
+
+ reinit_completion(&nfc->done);
+ writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
+ rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
+ dma_oob);
+ ret = wait_for_completion_timeout(&nfc->done,
+ msecs_to_jiffies(100));
+ if (!ret)
+ dev_warn(nfc->dev, "read: wait dma done timeout.\n");
+ /*
+ * Whether the DMA transfer is completed or not. The driver
+ * needs to check the NFC`s status register to see if the data
+ * transfer was completed.
+ */
+ ret = rk_nfc_wait_for_xfer_done(nfc);
+ dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
+ DMA_FROM_DEVICE);
+ dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
+ DMA_FROM_DEVICE);
+
+ if (ret) {
+ bitflips = -EIO;
+ dev_err(nfc->dev,
+ "read: wait transfer done timeout.\n");
+ goto out;
+ }
+
+ for (i = 0; i < ecc->steps; i++) {
+ oob = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
+ if (nfc->cfg->type == NFC_V6 ||
+ nfc->cfg->type == NFC_V8)
+ tmp = nfc->oob_buf[i * oob_step / 4];
+ else
+ tmp = nfc->oob_buf[i];
+ *oob++ = (u8)tmp;
+ *oob++ = (u8)(tmp >> 8);
+ *oob++ = (u8)(tmp >> 16);
+ *oob++ = (u8)(tmp >> 24);
+ }
+
+ /*
+ * Swap the first oob with the seventh oob and bad block
+ * mask is saved at the seventh oob.
+ */
+ swap(chip->oob_poi[0], chip->oob_poi[7]);
+
+ for (i = 0; i < ecc->steps / 2; i++) {
+ bch_st = readl_relaxed(nfc->regs +
+ nfc->cfg->bch_st_off + i * 4);
+ if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
+ bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
+ mtd->ecc_stats.failed++;
+ bitflips = -1;
+ } else {
+ ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
+ mtd->ecc_stats.corrected += ret;
+ bitflips = max_t(u32, bitflips, ret);
+
+ ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
+ mtd->ecc_stats.corrected += ret;
+ bitflips = max_t(u32, bitflips, ret);
+ }
+ }
+out:
+ memcpy(buf, nfc->page_buf, mtd->writesize);
+
+ if (boot_rom_mode && rk_nand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
+
+ if (bitflips < 0)
+ dev_err(nfc->dev, "read page: %x ecc error!\n", page);
+ } else {
+ rk_nfc_read_buf(chip, buf, mtd->writesize + mtd->oobsize);
+ }
+ /* Deselect the currently selected target. */
+ rk_nfc_select_chip(chip, -1);
+
+ return bitflips;
+}
+
+static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
+ int oob_on, int page)
+{
+ return rk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0);
+}
+
+static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on,
+ int pg)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ return rk_nfc_read_page(mtd, chip, 0, mtd->writesize, p, pg, 0);
+}
+
+static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
+ int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ int i, ret;
+
+ ret = rk_nfc_read_page(mtd, chip, 0, mtd->writesize, nfc->buffer,
+ page, 1);
+ if (ret < 0)
+ return ret;
+
+ for (i = 0; i < chip->ecc.steps; i++) {
+ memcpy(oob_ptr(chip, i), rk_oob_ptr(chip, i),
+ NFC_SYS_DATA_SIZE);
+
+ if (buf)
+ memcpy(data_ptr(chip, buf, i), rk_data_ptr(chip, i),
+ chip->ecc.size);
+ }
+ swap(chip->oob_poi[0], chip->oob_poi[7]);
+
+ return ret;
+}
+
+static int rk_nfc_read_oob_std(struct nand_chip *chip, int page)
+{
+ return rk_nfc_read_page_raw(chip, NULL, 1, page);
+}
+
+static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
+{
+ /* Disable flash wp. */
+ writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
+ /* Config default timing 40ns at 150 Mhz nfc clock. */
+ writel(0x1081, nfc->regs + NFC_FMWAIT);
+ /* Disable randomizer and DMA. */
+ writel(0, nfc->regs + nfc->cfg->randmz_off);
+ writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
+ writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
+}
+
+static irqreturn_t rk_nfc_irq(int irq, void *id)
+{
+ struct rk_nfc *nfc = id;
+ u32 sta, ien;
+
+ sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
+ ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
+
+ if (!(sta & ien))
+ return IRQ_NONE;
+
+ writel(sta, nfc->regs + nfc->cfg->int_clr_off);
+ writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
+
+ complete(&nfc->done);
+
+ return IRQ_HANDLED;
+}
+
+static int rk_nfc_enable_clk(struct device *dev, struct rk_nfc_clk *clk)
+{
+ int ret;
+
+ if (!IS_ERR(clk->nfc_clk)) {
+ ret = clk_prepare_enable(clk->nfc_clk);
+ if (ret) {
+ dev_err(dev, "failed to enable nfc clk\n");
+ return ret;
+ }
+ }
+
+ ret = clk_prepare_enable(clk->ahb_clk);
+ if (ret) {
+ dev_err(dev, "failed to enable ahb clk\n");
+ if (!IS_ERR(clk->nfc_clk))
+ clk_disable_unprepare(clk->nfc_clk);
+ return ret;
+ }
+
+ return 0;
+}
+
+static void rk_nfc_disable_clk(struct rk_nfc_clk *clk)
+{
+ if (!IS_ERR(clk->nfc_clk))
+ clk_disable_unprepare(clk->nfc_clk);
+ clk_disable_unprepare(clk->ahb_clk);
+}
+
+static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oob_region)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section >= chip->ecc.steps)
+ return -ERANGE;
+
+ if (!section) {
+ /* The first byte is bad block mask flag. */
+ oob_region->length = NFC_SYS_DATA_SIZE - 1;
+ oob_region->offset = 1;
+ } else {
+ oob_region->length = NFC_SYS_DATA_SIZE;
+ oob_region->offset = section * NFC_SYS_DATA_SIZE;
+ }
+
+ return 0;
+}
+
+static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oob_region)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section)
+ return -ERANGE;
+
+ oob_region->offset = NFC_SYS_DATA_SIZE * chip->ecc.steps;
+ oob_region->length = mtd->oobsize - oob_region->offset;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
+ .free = rk_nfc_ooblayout_free,
+ .ecc = rk_nfc_ooblayout_ecc,
+};
+
+static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ const u8 *strengths = nfc->cfg->ecc_strengths;
+ u8 max_strength, nfc_max_strength;
+ int i;
+
+ nfc_max_strength = nfc->cfg->ecc_strengths[0];
+ /* If optional dt settings not present. */
+ if (!ecc->size || !ecc->strength ||
+ ecc->strength > nfc_max_strength) {
+ /* Use datasheet requirements. */
+ ecc->strength = chip->base.eccreq.strength;
+ ecc->size = chip->base.eccreq.step_size;
+
+ /*
+ * Align eccstrength and eccsize.
+ * This controller only supports 512 and 1024 sizes.
+ */
+ if (chip->ecc.size < 1024) {
+ if (mtd->writesize > 512) {
+ chip->ecc.size = 1024;
+ chip->ecc.strength <<= 1;
+ } else {
+ dev_err(dev, "ecc.size not supported\n");
+ return -EINVAL;
+ }
+ } else {
+ chip->ecc.size = 1024;
+ }
+
+ ecc->steps = mtd->writesize / ecc->size;
+
+ /*
+ * HW ECC always request ECC bytes for 1024 bytes blocks.
+ * 4 Bytes is oob for sys data.
+ */
+ max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
+ fls(8 * 1024);
+ if (max_strength > nfc_max_strength)
+ max_strength = nfc_max_strength;
+
+ for (i = 0; i < 4; i++) {
+ if (max_strength >= strengths[i])
+ break;
+ }
+
+ if (i >= 4) {
+ dev_err(nfc->dev, "unsupported strength\n");
+ return -ENOTSUPP;
+ }
+
+ ecc->strength = strengths[i];
+ }
+ ecc->steps = mtd->writesize / ecc->size;
+ ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
+ /* HW ECC always work with even numbers of ECC bytes. */
+ ecc->bytes = ALIGN(ecc->bytes, 2);
+
+ rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
+
+ return 0;
+}
+
+static int rk_nfc_attach_chip(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct device *dev = mtd->dev.parent;
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int len;
+ int ret;
+
+ if (chip->options & NAND_BUSWIDTH_16) {
+ dev_err(dev, "16 bits bus width not supported");
+ return -EINVAL;
+ }
+
+ if (ecc->mode != NAND_ECC_HW)
+ return 0;
+
+ ret = rk_nfc_ecc_init(dev, mtd);
+ if (ret)
+ return ret;
+ rk_nand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE;
+
+ /* Check buffer first, avoid duplicate alloc buffer. */
+ if (nfc->buffer)
+ return 0;
+
+ len = mtd->writesize + mtd->oobsize;
+ nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL | GFP_DMA);
+ if (!nfc->buffer)
+ return -ENOMEM;
+
+ nfc->page_buf = nfc->buffer;
+ len = ecc->steps * NFC_MAX_OOB_PER_STEP;
+ nfc->oob_buf = devm_kzalloc(dev, len, GFP_KERNEL | GFP_DMA);
+ if (!nfc->oob_buf) {
+ devm_kfree(dev, nfc->buffer);
+ nfc->buffer = NULL;
+ nfc->oob_buf = NULL;
+ return -ENOMEM;
+ }
+
+ chip->ecc.write_page_raw = rk_nfc_write_page_raw;
+ chip->ecc.write_page = rk_nfc_write_page_hwecc;
+ chip->ecc.write_oob_raw = rk_nfc_write_oob_std;
+ chip->ecc.write_oob = rk_nfc_write_oob_std;
+
+ chip->ecc.read_page_raw = rk_nfc_read_page_raw;
+ chip->ecc.read_page = rk_nfc_read_page_hwecc;
+ chip->ecc.read_oob_raw = rk_nfc_read_oob_std;
+ chip->ecc.read_oob = rk_nfc_read_oob_std;
+
+ return 0;
+}
+
+static const struct nand_controller_ops rk_nfc_controller_ops = {
+ .attach_chip = rk_nfc_attach_chip,
+ .exec_op = rk_nfc_exec_op,
+ .setup_data_interface = rk_nfc_setup_data_interface,
+};
+
+static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
+ struct device_node *np)
+{
+ struct rk_nfc_nand_chip *nand;
+ struct nand_chip *chip;
+ struct mtd_info *mtd;
+ int nsels;
+ u32 tmp;
+ int ret;
+ int i;
+
+ if (!of_get_property(np, "reg", &nsels))
+ return -ENODEV;
+ nsels /= sizeof(u32);
+ if (!nsels || nsels > NFC_MAX_NSELS) {
+ dev_err(dev, "invalid reg property size %d\n", nsels);
+ return -EINVAL;
+ }
+
+ nand = devm_kzalloc(dev, sizeof(*nand) + nsels * sizeof(u8),
+ GFP_KERNEL);
+ if (!nand)
+ return -ENOMEM;
+
+ nand->nsels = nsels;
+ for (i = 0; i < nsels; i++) {
+ ret = of_property_read_u32_index(np, "reg", i, &tmp);
+ if (ret) {
+ dev_err(dev, "reg property failure : %d\n", ret);
+ return ret;
+ }
+
+ if (tmp >= NFC_MAX_NSELS) {
+ dev_err(dev, "invalid CS: %u\n", tmp);
+ return -EINVAL;
+ }
+
+ if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
+ dev_err(dev, "CS %u already assigned\n", tmp);
+ return -EINVAL;
+ }
+
+ nand->sels[i] = tmp;
+ }
+
+ chip = &nand->chip;
+ chip->controller = &nfc->controller;
+
+ nand_set_flash_node(chip, np);
+
+ nand_set_controller_data(chip, nfc);
+
+ chip->options |= NAND_USE_BOUNCE_BUFFER | NAND_NO_SUBPAGE_WRITE;
+ chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
+
+ /* Set default mode in case dt entry is missing. */
+ chip->ecc.mode = NAND_ECC_HW;
+
+ mtd = nand_to_mtd(chip);
+ mtd->owner = THIS_MODULE;
+ mtd->dev.parent = dev;
+
+ if (!mtd->name) {
+ dev_err(nfc->dev, "NAND label property is mandatory\n");
+ return -EINVAL;
+ }
+
+ mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
+ rk_nfc_hw_init(nfc);
+ ret = nand_scan(chip, nsels);
+ if (ret)
+ return ret;
+
+ if (chip->options & NAND_IS_BOOT_MEDIUM) {
+ ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
+ nand->boot_blks = ret ? 0 : tmp;
+
+ ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
+ &tmp);
+ nand->boot_ecc = ret ? chip->ecc.strength : tmp;
+ }
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret) {
+ dev_err(dev, "mtd parse partition error\n");
+ nand_release(chip);
+ return ret;
+ }
+
+ list_add_tail(&nand->node, &nfc->chips);
+
+ return 0;
+}
+
+static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
+{
+ struct device_node *np = dev->of_node;
+ struct device_node *nand_np;
+ int ret = -EINVAL;
+ int tmp;
+
+ for_each_child_of_node(np, nand_np) {
+ tmp = rk_nfc_nand_chip_init(dev, nfc, nand_np);
+ if (tmp) {
+ of_node_put(nand_np);
+ return ret;
+ }
+ /* At least one nand chip is initialized. */
+ ret = 0;
+ }
+
+ return ret;
+}
+
+static struct nfc_cfg nfc_v6_cfg = {
+ .type = NFC_V6,
+ .ecc_strengths = {60, 40, 24, 16},
+ .ecc_cfgs = {
+ 0x00040011, 0x00040001, 0x00000011, 0x00000001,
+ },
+ .flctl_off = 0x08,
+ .bchctl_off = 0x0C,
+ .dma_cfg_off = 0x10,
+ .dma_data_buf_off = 0x14,
+ .dma_oob_buf_off = 0x18,
+ .dma_st_off = 0x1C,
+ .bch_st_off = 0x20,
+ .randmz_off = 0x150,
+ .int_en_off = 0x16C,
+ .int_clr_off = 0x170,
+ .int_st_off = 0x174,
+ .oob0_off = 0x200,
+ .oob1_off = 0x230,
+ .ecc0 = {
+ .err_flag_bit = 2,
+ .low = 3,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 27,
+ .high_mask = 0x1,
+ },
+ .ecc1 = {
+ .err_flag_bit = 15,
+ .low = 16,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 29,
+ .high_mask = 0x1,
+ },
+};
+
+static struct nfc_cfg nfc_v8_cfg = {
+ .type = NFC_V8,
+ .ecc_strengths = {16, 16, 16, 16},
+ .ecc_cfgs = {
+ 0x00000001, 0x00000001, 0x00000001, 0x00000001,
+ },
+ .flctl_off = 0x08,
+ .bchctl_off = 0x0C,
+ .dma_cfg_off = 0x10,
+ .dma_data_buf_off = 0x14,
+ .dma_oob_buf_off = 0x18,
+ .dma_st_off = 0x1C,
+ .bch_st_off = 0x20,
+ .bch_st_off = 0x20,
+ .randmz_off = 0x150,
+ .int_en_off = 0x16C,
+ .int_clr_off = 0x170,
+ .int_st_off = 0x174,
+ .oob0_off = 0x200,
+ .oob1_off = 0x230,
+ .ecc0 = {
+ .err_flag_bit = 2,
+ .low = 3,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 27,
+ .high_mask = 0x1,
+ },
+ .ecc1 = {
+ .err_flag_bit = 15,
+ .low = 16,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 29,
+ .high_mask = 0x1,
+ },
+};
+
+static struct nfc_cfg nfc_v9_cfg = {
+ .type = NFC_V9,
+ .ecc_strengths = {70, 60, 40, 16},
+ .ecc_cfgs = {
+ 0x00000001, 0x06000001, 0x04000001, 0x02000001,
+ },
+ .flctl_off = 0x10,
+ .bchctl_off = 0x20,
+ .dma_cfg_off = 0x30,
+ .dma_data_buf_off = 0x34,
+ .dma_oob_buf_off = 0x38,
+ .dma_st_off = 0x3C,
+ .bch_st_off = 0x150,
+ .randmz_off = 0x208,
+ .int_en_off = 0x120,
+ .int_clr_off = 0x124,
+ .int_st_off = 0x128,
+ .oob0_off = 0x200,
+ .oob1_off = 0x204,
+ .ecc0 = {
+ .err_flag_bit = 2,
+ .low = 3,
+ .low_mask = 0x7F,
+ .low_bn = 7,
+ .high = 0,
+ .high_mask = 0x0,
+ },
+ .ecc1 = {
+ .err_flag_bit = 18,
+ .low = 19,
+ .low_mask = 0x7F,
+ .low_bn = 7,
+ .high = 0,
+ .high_mask = 0x0,
+ },
+};
+
+static const struct of_device_id rk_nfc_id_table[] = {
+ {.compatible = "rockchip,px30-nfc",
+ .data = &nfc_v9_cfg },
+ {.compatible = "rockchip,rk2928-nfc",
+ .data = &nfc_v6_cfg },
+ {.compatible = "rockchip,rv1108-nfc",
+ .data = &nfc_v8_cfg },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
+
+static int rk_nfc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct rk_nfc *nfc;
+ struct resource *res;
+ int ret, irq;
+
+ nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
+ if (!nfc)
+ return -ENOMEM;
+
+ nand_controller_init(&nfc->controller);
+ INIT_LIST_HEAD(&nfc->chips);
+ nfc->controller.ops = &rk_nfc_controller_ops;
+
+ nfc->cfg = of_device_get_match_data(dev);
+ nfc->dev = dev;
+
+ init_completion(&nfc->done);
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ nfc->regs = devm_ioremap_resource(dev, res);
+ if (IS_ERR(nfc->regs)) {
+ ret = PTR_ERR(nfc->regs);
+ goto release_nfc;
+ }
+
+ nfc->clk.nfc_clk = devm_clk_get(dev, "nfc");
+ if (IS_ERR(nfc->clk.nfc_clk)) {
+ dev_dbg(dev, "no nfc clk\n");
+ /* Some old device, sush as rk3066, has no nfc clk. */
+ }
+
+ nfc->clk.ahb_clk = devm_clk_get(dev, "ahb");
+ if (IS_ERR(nfc->clk.ahb_clk)) {
+ dev_err(dev, "no ahb clk\n");
+ ret = PTR_ERR(nfc->clk.ahb_clk);
+ goto release_nfc;
+ }
+
+ ret = rk_nfc_enable_clk(dev, &nfc->clk);
+ if (ret)
+ goto release_nfc;
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0) {
+ dev_err(dev, "no nfc irq resource\n");
+ ret = -EINVAL;
+ goto clk_disable;
+ }
+
+ writel(0, nfc->regs + nfc->cfg->int_en_off);
+ ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
+ if (ret) {
+ dev_err(dev, "failed to request nfc irq\n");
+ goto clk_disable;
+ }
+
+ platform_set_drvdata(pdev, nfc);
+
+ ret = rk_nfc_nand_chips_init(dev, nfc);
+ if (ret) {
+ dev_err(dev, "failed to init nand chips\n");
+ goto clk_disable;
+ }
+ return 0;
+
+clk_disable:
+ rk_nfc_disable_clk(&nfc->clk);
+release_nfc:
+ return ret;
+}
+
+static int rk_nfc_remove(struct platform_device *pdev)
+{
+ struct rk_nfc *nfc = platform_get_drvdata(pdev);
+ struct rk_nfc_nand_chip *nand;
+
+ while (!list_empty(&nfc->chips)) {
+ nand = list_first_entry(&nfc->chips, struct rk_nfc_nand_chip,
+ node);
+ nand_release(&nand->chip);
+ list_del(&nand->node);
+ }
+
+ rk_nfc_disable_clk(&nfc->clk);
+
+ return 0;
+}
+
+static int __maybe_unused rk_nfc_suspend(struct device *dev)
+{
+ struct rk_nfc *nfc = dev_get_drvdata(dev);
+
+ rk_nfc_disable_clk(&nfc->clk);
+
+ return 0;
+}
+
+static int __maybe_unused rk_nfc_resume(struct device *dev)
+{
+ struct rk_nfc *nfc = dev_get_drvdata(dev);
+ struct rk_nfc_nand_chip *nand;
+ struct nand_chip *chip;
+ int ret;
+ u32 i;
+
+ ret = rk_nfc_enable_clk(dev, &nfc->clk);
+ if (ret)
+ return ret;
+
+ /* Reset NAND chip if VCC was powered off. */
+ list_for_each_entry(nand, &nfc->chips, node) {
+ chip = &nand->chip;
+ for (i = 0; i < nand->nsels; i++)
+ nand_reset(chip, i);
+ }
+
+ return 0;
+}
+
+static const struct dev_pm_ops rk_nfc_pm_ops = {
+ SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
+};
+
+static struct platform_driver rk_nfc_driver = {
+ .probe = rk_nfc_probe,
+ .remove = rk_nfc_remove,
+ .driver = {
+ .name = "rockchip-nfc",
+ .of_match_table = rk_nfc_id_table,
+ .pm = &rk_nfc_pm_ops,
+ },
+};
+
+module_platform_driver(rk_nfc_driver);
+
+MODULE_LICENSE("Dual MIT/GPL");
+MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
+MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
+MODULE_ALIAS("platform:rockchip-nand-controller");
--
2.17.1


\
 
 \ /
  Last update: 2020-06-09 09:48    [W:0.203 / U:0.804 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site