lkml.org 
[lkml]   [2020]   [Jun]   [7]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH v2 02/18] seqlock: Properly format kernel-doc code samples
Date
Align the code samples and note sections inside kernel-doc comments with
tabs. This way they can be properly parsed and rendered by Sphinx. It
also makes the code samples easier to read from text editors.

Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
---
include/linux/seqlock.h | 82 +++++++++++++++++++++--------------------
1 file changed, 43 insertions(+), 39 deletions(-)

diff --git a/include/linux/seqlock.h b/include/linux/seqlock.h
index aee894dc49aa..7296af778301 100644
--- a/include/linux/seqlock.h
+++ b/include/linux/seqlock.h
@@ -232,7 +232,7 @@ static inline void raw_write_seqcount_end(seqcount_t *s)
*
* This can be used to provide an ordering guarantee instead of the
* usual consistency guarantee. It is one wmb cheaper, because we can
- * collapse the two back-to-back wmb()s.
+ * collapse the two back-to-back wmb()s::
*
* seqcount_t seq;
* bool X = true, Y = false;
@@ -292,64 +292,68 @@ static inline int raw_read_seqcount_latch(seqcount_t *s)
* Very simply put: we first modify one copy and then the other. This ensures
* there is always one copy in a stable state, ready to give us an answer.
*
- * The basic form is a data structure like:
+ * The basic form is a data structure like::
*
- * struct latch_struct {
- * seqcount_t seq;
- * struct data_struct data[2];
- * };
+ * struct latch_struct {
+ * seqcount_t seq;
+ * struct data_struct data[2];
+ * };
*
* Where a modification, which is assumed to be externally serialized, does the
- * following:
+ * following::
*
- * void latch_modify(struct latch_struct *latch, ...)
- * {
- * smp_wmb(); <- Ensure that the last data[1] update is visible
- * latch->seq++;
- * smp_wmb(); <- Ensure that the seqcount update is visible
+ * void latch_modify(struct latch_struct *latch, ...)
+ * {
+ * smp_wmb(); // Ensure that the last data[1] update is visible
+ * latch->seq++;
+ * smp_wmb(); // Ensure that the seqcount update is visible
*
- * modify(latch->data[0], ...);
+ * modify(latch->data[0], ...);
*
- * smp_wmb(); <- Ensure that the data[0] update is visible
- * latch->seq++;
- * smp_wmb(); <- Ensure that the seqcount update is visible
+ * smp_wmb(); // Ensure that the data[0] update is visible
+ * latch->seq++;
+ * smp_wmb(); // Ensure that the seqcount update is visible
*
- * modify(latch->data[1], ...);
- * }
+ * modify(latch->data[1], ...);
+ * }
*
- * The query will have a form like:
+ * The query will have a form like::
*
- * struct entry *latch_query(struct latch_struct *latch, ...)
- * {
- * struct entry *entry;
- * unsigned seq, idx;
+ * struct entry *latch_query(struct latch_struct *latch, ...)
+ * {
+ * struct entry *entry;
+ * unsigned seq, idx;
*
- * do {
- * seq = raw_read_seqcount_latch(&latch->seq);
+ * do {
+ * seq = raw_read_seqcount_latch(&latch->seq);
*
- * idx = seq & 0x01;
- * entry = data_query(latch->data[idx], ...);
+ * idx = seq & 0x01;
+ * entry = data_query(latch->data[idx], ...);
*
- * smp_rmb();
- * } while (seq != latch->seq);
+ * smp_rmb();
+ * } while (seq != latch->seq);
*
- * return entry;
- * }
+ * return entry;
+ * }
*
* So during the modification, queries are first redirected to data[1]. Then we
* modify data[0]. When that is complete, we redirect queries back to data[0]
* and we can modify data[1].
*
- * NOTE: The non-requirement for atomic modifications does _NOT_ include
- * the publishing of new entries in the case where data is a dynamic
- * data structure.
+ * NOTE:
*
- * An iteration might start in data[0] and get suspended long enough
- * to miss an entire modification sequence, once it resumes it might
- * observe the new entry.
+ * The non-requirement for atomic modifications does _NOT_ include
+ * the publishing of new entries in the case where data is a dynamic
+ * data structure.
*
- * NOTE: When data is a dynamic data structure; one should use regular RCU
- * patterns to manage the lifetimes of the objects within.
+ * An iteration might start in data[0] and get suspended long enough
+ * to miss an entire modification sequence, once it resumes it might
+ * observe the new entry.
+ *
+ * NOTE:
+ *
+ * When data is a dynamic data structure; one should use regular RCU
+ * patterns to manage the lifetimes of the objects within.
*/
static inline void raw_write_seqcount_latch(seqcount_t *s)
{
--
2.20.1
\
 
 \ /
  Last update: 2020-06-08 02:58    [W:0.996 / U:0.116 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site