lkml.org 
[lkml]   [2020]   [Jun]   [23]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
From
Date
SubjectRe: [PATCH] mm: Track mmu notifiers in fs_reclaim_acquire/release
On Wed, Jun 24, 2020 at 12:31 AM Dave Chinner <david@fromorbit.com> wrote:
>
> On Sun, Jun 21, 2020 at 01:42:05PM -0400, Qian Cai wrote:
> > On Wed, Jun 10, 2020 at 09:41:01PM +0200, Daniel Vetter wrote:
> > > fs_reclaim_acquire/release nicely catch recursion issues when
> > > allocating GFP_KERNEL memory against shrinkers (which gpu drivers tend
> > > to use to keep the excessive caches in check). For mmu notifier
> > > recursions we do have lockdep annotations since 23b68395c7c7
> > > ("mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end").
> > >
> > > But these only fire if a path actually results in some pte
> > > invalidation - for most small allocations that's very rarely the case.
> > > The other trouble is that pte invalidation can happen any time when
> > > __GFP_RECLAIM is set. Which means only really GFP_ATOMIC is a safe
> > > choice, GFP_NOIO isn't good enough to avoid potential mmu notifier
> > > recursion.
> > >
> > > I was pondering whether we should just do the general annotation, but
> > > there's always the risk for false positives. Plus I'm assuming that
> > > the core fs and io code is a lot better reviewed and tested than
> > > random mmu notifier code in drivers. Hence why I decide to only
> > > annotate for that specific case.
> > >
> > > Furthermore even if we'd create a lockdep map for direct reclaim, we'd
> > > still need to explicit pull in the mmu notifier map - there's a lot
> > > more places that do pte invalidation than just direct reclaim, these
> > > two contexts arent the same.
> > >
> > > Note that the mmu notifiers needing their own independent lockdep map
> > > is also the reason we can't hold them from fs_reclaim_acquire to
> > > fs_reclaim_release - it would nest with the acquistion in the pte
> > > invalidation code, causing a lockdep splat. And we can't remove the
> > > annotations from pte invalidation and all the other places since
> > > they're called from many other places than page reclaim. Hence we can
> > > only do the equivalent of might_lock, but on the raw lockdep map.
> > >
> > > With this we can also remove the lockdep priming added in 66204f1d2d1b
> > > ("mm/mmu_notifiers: prime lockdep") since the new annotations are
> > > strictly more powerful.
> > >
> > > v2: Review from Thomas Hellstrom:
> > > - unbotch the fs_reclaim context check, I accidentally inverted it,
> > > but it didn't blow up because I inverted it immediately
> > > - fix compiling for !CONFIG_MMU_NOTIFIER
> > >
> > > Cc: Thomas Hellström (Intel) <thomas_os@shipmail.org>
> > > Cc: Andrew Morton <akpm@linux-foundation.org>
> > > Cc: Jason Gunthorpe <jgg@mellanox.com>
> > > Cc: linux-mm@kvack.org
> > > Cc: linux-rdma@vger.kernel.org
> > > Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
> > > Cc: Christian König <christian.koenig@amd.com>
> > > Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
> >
> > Replying the right patch here...
> >
> > Reverting this commit [1] fixed the lockdep warning below while applying
> > some memory pressure.
> >
> > [1] linux-next cbf7c9d86d75 ("mm: track mmu notifiers in fs_reclaim_acquire/release")
> >
> > [ 190.455003][ T369] WARNING: possible circular locking dependency detected
> > [ 190.487291][ T369] 5.8.0-rc1-next-20200621 #1 Not tainted
> > [ 190.512363][ T369] ------------------------------------------------------
> > [ 190.543354][ T369] kswapd3/369 is trying to acquire lock:
> > [ 190.568523][ T369] ffff889fcf694528 (&xfs_nondir_ilock_class){++++}-{3:3}, at: xfs_reclaim_inode+0xdf/0x860
> > spin_lock at include/linux/spinlock.h:353
> > (inlined by) xfs_iflags_test_and_set at fs/xfs/xfs_inode.h:166
> > (inlined by) xfs_iflock_nowait at fs/xfs/xfs_inode.h:249
> > (inlined by) xfs_reclaim_inode at fs/xfs/xfs_icache.c:1127
> > [ 190.614359][ T369]
> > [ 190.614359][ T369] but task is already holding lock:
> > [ 190.647763][ T369] ffffffffb50ced00 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x0/0x30
> > __fs_reclaim_acquire at mm/page_alloc.c:4200
> > [ 190.687845][ T369]
> > [ 190.687845][ T369] which lock already depends on the new lock.
> > [ 190.687845][ T369]
> > [ 190.734890][ T369]
> > [ 190.734890][ T369] the existing dependency chain (in reverse order) is:
> > [ 190.775991][ T369]
> > [ 190.775991][ T369] -> #1 (fs_reclaim){+.+.}-{0:0}:
> > [ 190.808150][ T369] fs_reclaim_acquire+0x77/0x80
> > [ 190.832152][ T369] slab_pre_alloc_hook.constprop.52+0x20/0x120
> > slab_pre_alloc_hook at mm/slab.h:507
> > [ 190.862173][ T369] kmem_cache_alloc+0x43/0x2a0
> > [ 190.885602][ T369] kmem_zone_alloc+0x113/0x3ef
> > kmem_zone_alloc at fs/xfs/kmem.c:129
> > [ 190.908702][ T369] xfs_inode_item_init+0x1d/0xa0
> > xfs_inode_item_init at fs/xfs/xfs_inode_item.c:639
> > [ 190.934461][ T369] xfs_trans_ijoin+0x96/0x100
> > xfs_trans_ijoin at fs/xfs/libxfs/xfs_trans_inode.c:34
> > [ 190.961530][ T369] xfs_setattr_nonsize+0x1a6/0xcd0
>
> OK, this patch has royally screwed something up if this path thinks
> it can enter memory reclaim. This path is inside a transaction, so
> it is running under PF_MEMALLOC_NOFS context, so should *never*
> enter memory reclaim.
>
> I'd suggest that whatever mods were made to fs_reclaim_acquire by
> this patch broke it's basic functionality....
>
> > > diff --git a/mm/page_alloc.c b/mm/page_alloc.c
> > > index 13cc653122b7..7536faaaa0fd 100644
> > > --- a/mm/page_alloc.c
> > > +++ b/mm/page_alloc.c
> > > @@ -57,6 +57,7 @@
> > > #include <trace/events/oom.h>
> > > #include <linux/prefetch.h>
> > > #include <linux/mm_inline.h>
> > > +#include <linux/mmu_notifier.h>
> > > #include <linux/migrate.h>
> > > #include <linux/hugetlb.h>
> > > #include <linux/sched/rt.h>
> > > @@ -4124,7 +4125,7 @@ should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_fla
> > > static struct lockdep_map __fs_reclaim_map =
> > > STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
> > >
> > > -static bool __need_fs_reclaim(gfp_t gfp_mask)
> > > +static bool __need_reclaim(gfp_t gfp_mask)
> > > {
> > > gfp_mask = current_gfp_context(gfp_mask);
>
> This is applies the per-task memory allocation context flags to the
> mask that is checked here.
>
> > > @@ -4136,10 +4137,6 @@ static bool __need_fs_reclaim(gfp_t gfp_mask)
> > > if (current->flags & PF_MEMALLOC)
> > > return false;
> > >
> > > - /* We're only interested __GFP_FS allocations for now */
> > > - if (!(gfp_mask & __GFP_FS))
> > > - return false;
> > > -
> > > if (gfp_mask & __GFP_NOLOCKDEP)
> > > return false;
> > >
> > > @@ -4158,15 +4155,25 @@ void __fs_reclaim_release(void)
> > >
> > > void fs_reclaim_acquire(gfp_t gfp_mask)
> > > {
> > > - if (__need_fs_reclaim(gfp_mask))
> > > - __fs_reclaim_acquire();
> > > + if (__need_reclaim(gfp_mask)) {
> > > + if (gfp_mask & __GFP_FS)
> > > + __fs_reclaim_acquire();
>
> .... and they have not been applied in this path. There's your
> breakage.
>
> For future reference, please post anything that changes NOFS
> allocation contexts or behaviours to linux-fsdevel, as filesystem
> developers need to know about proposed changes to infrastructure
> that is critical to the correct functioning of filesystems...

Uh crap I totally missed that. Apologies for wasting everyone's time here.

Andrew, please drop for now, I respin this thing.
-Daniel
--
Daniel Vetter
Software Engineer, Intel Corporation
http://blog.ffwll.ch

\
 
 \ /
  Last update: 2020-06-24 00:49    [W:0.186 / U:0.064 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site