lkml.org 
[lkml]   [2020]   [May]   [27]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
From
Date
SubjectRe: [PATCH v3 6/8] mm: parallelize deferred_init_memmap()
On Wed, May 27, 2020 at 10:37 AM Daniel Jordan
<daniel.m.jordan@oracle.com> wrote:
>
> Deferred struct page init is a significant bottleneck in kernel boot.
> Optimizing it maximizes availability for large-memory systems and allows
> spinning up short-lived VMs as needed without having to leave them
> running. It also benefits bare metal machines hosting VMs that are
> sensitive to downtime. In projects such as VMM Fast Restart[1], where
> guest state is preserved across kexec reboot, it helps prevent
> application and network timeouts in the guests.
>
> Multithread to take full advantage of system memory bandwidth.
>
> The maximum number of threads is capped at the number of CPUs on the
> node because speedups always improve with additional threads on every
> system tested, and at this phase of boot, the system is otherwise idle
> and waiting on page init to finish.
>
> Helper threads operate on section-aligned ranges to both avoid false
> sharing when setting the pageblock's migrate type and to avoid accessing
> uninitialized buddy pages, though max order alignment is enough for the
> latter.
>
> The minimum chunk size is also a section. There was benefit to using
> multiple threads even on relatively small memory (1G) systems, and this
> is the smallest size that the alignment allows.
>
> The time (milliseconds) is the slowest node to initialize since boot
> blocks until all nodes finish. intel_pstate is loaded in active mode
> without hwp and with turbo enabled, and intel_idle is active as well.
>
> Intel(R) Xeon(R) Platinum 8167M CPU @ 2.00GHz (Skylake, bare metal)
> 2 nodes * 26 cores * 2 threads = 104 CPUs
> 384G/node = 768G memory
>
> kernel boot deferred init
> ------------------------ ------------------------
> node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
> ( 0) -- 4089.7 ( 8.1) -- 1785.7 ( 7.6)
> 2% ( 1) 1.7% 4019.3 ( 1.5) 3.8% 1717.7 ( 11.8)
> 12% ( 6) 34.9% 2662.7 ( 2.9) 79.9% 359.3 ( 0.6)
> 25% ( 13) 39.9% 2459.0 ( 3.6) 91.2% 157.0 ( 0.0)
> 37% ( 19) 39.2% 2485.0 ( 29.7) 90.4% 172.0 ( 28.6)
> 50% ( 26) 39.3% 2482.7 ( 25.7) 90.3% 173.7 ( 30.0)
> 75% ( 39) 39.0% 2495.7 ( 5.5) 89.4% 190.0 ( 1.0)
> 100% ( 52) 40.2% 2443.7 ( 3.8) 92.3% 138.0 ( 1.0)
>
> Intel(R) Xeon(R) CPU E5-2699C v4 @ 2.20GHz (Broadwell, kvm guest)
> 1 node * 16 cores * 2 threads = 32 CPUs
> 192G/node = 192G memory
>
> kernel boot deferred init
> ------------------------ ------------------------
> node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
> ( 0) -- 1988.7 ( 9.6) -- 1096.0 ( 11.5)
> 3% ( 1) 1.1% 1967.0 ( 17.6) 0.3% 1092.7 ( 11.0)
> 12% ( 4) 41.1% 1170.3 ( 14.2) 73.8% 287.0 ( 3.6)
> 25% ( 8) 47.1% 1052.7 ( 21.9) 83.9% 177.0 ( 13.5)
> 38% ( 12) 48.9% 1016.3 ( 12.1) 86.8% 144.7 ( 1.5)
> 50% ( 16) 48.9% 1015.7 ( 8.1) 87.8% 134.0 ( 4.4)
> 75% ( 24) 49.1% 1012.3 ( 3.1) 88.1% 130.3 ( 2.3)
> 100% ( 32) 49.5% 1004.0 ( 5.3) 88.5% 125.7 ( 2.1)
>
> Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, bare metal)
> 2 nodes * 18 cores * 2 threads = 72 CPUs
> 128G/node = 256G memory
>
> kernel boot deferred init
> ------------------------ ------------------------
> node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
> ( 0) -- 1680.0 ( 4.6) -- 627.0 ( 4.0)
> 3% ( 1) 0.3% 1675.7 ( 4.5) -0.2% 628.0 ( 3.6)
> 11% ( 4) 25.6% 1250.7 ( 2.1) 67.9% 201.0 ( 0.0)
> 25% ( 9) 30.7% 1164.0 ( 17.3) 81.8% 114.3 ( 17.7)
> 36% ( 13) 31.4% 1152.7 ( 10.8) 84.0% 100.3 ( 17.9)
> 50% ( 18) 31.5% 1150.7 ( 9.3) 83.9% 101.0 ( 14.1)
> 75% ( 27) 31.7% 1148.0 ( 5.6) 84.5% 97.3 ( 6.4)
> 100% ( 36) 32.0% 1142.3 ( 4.0) 85.6% 90.0 ( 1.0)
>
> AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
> 1 node * 8 cores * 2 threads = 16 CPUs
> 64G/node = 64G memory
>
> kernel boot deferred init
> ------------------------ ------------------------
> node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
> ( 0) -- 1029.3 ( 25.1) -- 240.7 ( 1.5)
> 6% ( 1) -0.6% 1036.0 ( 7.8) -2.2% 246.0 ( 0.0)
> 12% ( 2) 11.8% 907.7 ( 8.6) 44.7% 133.0 ( 1.0)
> 25% ( 4) 13.9% 886.0 ( 10.6) 62.6% 90.0 ( 6.0)
> 38% ( 6) 17.8% 845.7 ( 14.2) 69.1% 74.3 ( 3.8)
> 50% ( 8) 16.8% 856.0 ( 22.1) 72.9% 65.3 ( 5.7)
> 75% ( 12) 15.4% 871.0 ( 29.2) 79.8% 48.7 ( 7.4)
> 100% ( 16) 21.0% 813.7 ( 21.0) 80.5% 47.0 ( 5.2)
>
> Server-oriented distros that enable deferred page init sometimes run in
> small VMs, and they still benefit even though the fraction of boot time
> saved is smaller:
>
> AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
> 1 node * 2 cores * 2 threads = 4 CPUs
> 16G/node = 16G memory
>
> kernel boot deferred init
> ------------------------ ------------------------
> node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
> ( 0) -- 716.0 ( 14.0) -- 49.7 ( 0.6)
> 25% ( 1) 1.8% 703.0 ( 5.3) -4.0% 51.7 ( 0.6)
> 50% ( 2) 1.6% 704.7 ( 1.2) 43.0% 28.3 ( 0.6)
> 75% ( 3) 2.7% 696.7 ( 13.1) 49.7% 25.0 ( 0.0)
> 100% ( 4) 4.1% 687.0 ( 10.4) 55.7% 22.0 ( 0.0)
>
> Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, kvm guest)
> 1 node * 2 cores * 2 threads = 4 CPUs
> 14G/node = 14G memory
>
> kernel boot deferred init
> ------------------------ ------------------------
> node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
> ( 0) -- 787.7 ( 6.4) -- 122.3 ( 0.6)
> 25% ( 1) 0.2% 786.3 ( 10.8) -2.5% 125.3 ( 2.1)
> 50% ( 2) 5.9% 741.0 ( 13.9) 37.6% 76.3 ( 19.7)
> 75% ( 3) 8.3% 722.0 ( 19.0) 49.9% 61.3 ( 3.2)
> 100% ( 4) 9.3% 714.7 ( 9.5) 56.4% 53.3 ( 1.5)
>
> On Josh's 96-CPU and 192G memory system:
>
> Without this patch series:
> [ 0.487132] node 0 initialised, 23398907 pages in 292ms
> [ 0.499132] node 1 initialised, 24189223 pages in 304ms
> ...
> [ 0.629376] Run /sbin/init as init process
>
> With this patch series:
> [ 0.231435] node 1 initialised, 24189223 pages in 32ms
> [ 0.236718] node 0 initialised, 23398907 pages in 36ms
>
> [1] https://static.sched.com/hosted_files/kvmforum2019/66/VMM-fast-restart_kvmforum2019.pdf
>
> Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
> Tested-by: Josh Triplett <josh@joshtriplett.org>
> ---
> mm/Kconfig | 6 +++---
> mm/page_alloc.c | 46 ++++++++++++++++++++++++++++++++++++++++------
> 2 files changed, 43 insertions(+), 9 deletions(-)
>
> diff --git a/mm/Kconfig b/mm/Kconfig
> index c1acc34c1c358..04c1da3f9f44c 100644
> --- a/mm/Kconfig
> +++ b/mm/Kconfig
> @@ -750,13 +750,13 @@ config DEFERRED_STRUCT_PAGE_INIT
> depends on SPARSEMEM
> depends on !NEED_PER_CPU_KM
> depends on 64BIT
> + select PADATA
> help
> Ordinarily all struct pages are initialised during early boot in a
> single thread. On very large machines this can take a considerable
> amount of time. If this option is set, large machines will bring up
> - a subset of memmap at boot and then initialise the rest in parallel
> - by starting one-off "pgdatinitX" kernel thread for each node X. This
> - has a potential performance impact on processes running early in the
> + a subset of memmap at boot and then initialise the rest in parallel.
> + This has a potential performance impact on tasks running early in the
> lifetime of the system until these kthreads finish the
> initialisation.
>
> diff --git a/mm/page_alloc.c b/mm/page_alloc.c
> index d64f3027fdfa6..1d47016849531 100644
> --- a/mm/page_alloc.c
> +++ b/mm/page_alloc.c
> @@ -68,6 +68,7 @@
> #include <linux/lockdep.h>
> #include <linux/nmi.h>
> #include <linux/psi.h>
> +#include <linux/padata.h>
>
> #include <asm/sections.h>
> #include <asm/tlbflush.h>
> @@ -1814,6 +1815,26 @@ deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
> return nr_pages;
> }
>
> +static void __init
> +deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
> + void *arg)
> +{
> + unsigned long spfn, epfn;
> + struct zone *zone = arg;
> + u64 i;
> +
> + deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
> +
> + /*
> + * Initialize and free pages in MAX_ORDER sized increments so that we
> + * can avoid introducing any issues with the buddy allocator.
> + */
> + while (spfn < end_pfn) {
> + deferred_init_maxorder(&i, zone, &spfn, &epfn);
> + cond_resched();
> + }
> +}
> +
> /* Initialise remaining memory on a node */
> static int __init deferred_init_memmap(void *data)
> {
> @@ -1823,7 +1844,7 @@ static int __init deferred_init_memmap(void *data)
> unsigned long first_init_pfn, flags;
> unsigned long start = jiffies;
> struct zone *zone;
> - int zid;
> + int zid, max_threads;
> u64 i;
>
> /* Bind memory initialisation thread to a local node if possible */
> @@ -1863,13 +1884,26 @@ static int __init deferred_init_memmap(void *data)
> goto zone_empty;
>
> /*
> - * Initialize and free pages in MAX_ORDER sized increments so
> - * that we can avoid introducing any issues with the buddy
> - * allocator.
> + * More CPUs always led to greater speedups on tested systems, up to
> + * all the nodes' CPUs. Use all since the system is otherwise idle now.
> */
> + max_threads = max(cpumask_weight(cpumask), 1u);
> +
> while (spfn < epfn) {
> - deferred_init_maxorder(&i, zone, &spfn, &epfn);
> - cond_resched();
> + unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
> + struct padata_mt_job job = {
> + .thread_fn = deferred_init_memmap_chunk,
> + .fn_arg = zone,
> + .start = spfn,
> + .size = epfn_align - spfn,
> + .align = PAGES_PER_SECTION,
> + .min_chunk = PAGES_PER_SECTION,
> + .max_threads = max_threads,
> + };
> +
> + padata_do_multithreaded(&job);
> + deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
> + epfn_align);
> }
> zone_empty:
> /* Sanity check that the next zone really is unpopulated */

So I am not a huge fan of using deferred_init_mem_pfn_range_in zone
simply for the fact that we end up essentially discarding the i value
and will have to walk the list repeatedly. However I don't think the
overhead will be that great as I suspect there aren't going to be
systems with that many ranges. So this is probably fine.

Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>

\
 
 \ /
  Last update: 2020-05-27 23:29    [W:0.058 / U:0.728 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site