lkml.org 
[lkml]   [2019]   [Mar]   [18]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
Date
From
SubjectRe: [PATCH v10 2/2] pwm: sifive: Add a driver for SiFive SoC PWM
Hello,

[I put Thierry into To: because some remaining questions depend on his
views]

On Mon, Mar 18, 2019 at 05:17:14PM +0530, Yash Shah wrote:
> Adds a PWM driver for PWM chip present in SiFive's HiFive Unleashed SoC.
>
> Signed-off-by: Wesley W. Terpstra <wesley@sifive.com>
> [Atish: Various fixes and code cleanup]
> Signed-off-by: Atish Patra <atish.patra@wdc.com>
> Signed-off-by: Yash Shah <yash.shah@sifive.com>
> ---
> drivers/pwm/Kconfig | 11 ++
> drivers/pwm/Makefile | 1 +
> drivers/pwm/pwm-sifive.c | 334 +++++++++++++++++++++++++++++++++++++++++++++++
> 3 files changed, 346 insertions(+)
> create mode 100644 drivers/pwm/pwm-sifive.c
>
> diff --git a/drivers/pwm/Kconfig b/drivers/pwm/Kconfig
> index a8f47df..4a61d1a 100644
> --- a/drivers/pwm/Kconfig
> +++ b/drivers/pwm/Kconfig
> @@ -380,6 +380,17 @@ config PWM_SAMSUNG
> To compile this driver as a module, choose M here: the module
> will be called pwm-samsung.
>
> +config PWM_SIFIVE
> + tristate "SiFive PWM support"
> + depends on OF
> + depends on COMMON_CLK
> + depends on RISCV || COMPILE_TEST
> + help
> + Generic PWM framework driver for SiFive SoCs.
> +
> + To compile this driver as a module, choose M here: the module
> + will be called pwm-sifive.
> +
> config PWM_SPEAR
> tristate "STMicroelectronics SPEAr PWM support"
> depends on PLAT_SPEAR
> diff --git a/drivers/pwm/Makefile b/drivers/pwm/Makefile
> index 9c676a0..30089ca 100644
> --- a/drivers/pwm/Makefile
> +++ b/drivers/pwm/Makefile
> @@ -37,6 +37,7 @@ obj-$(CONFIG_PWM_RCAR) += pwm-rcar.o
> obj-$(CONFIG_PWM_RENESAS_TPU) += pwm-renesas-tpu.o
> obj-$(CONFIG_PWM_ROCKCHIP) += pwm-rockchip.o
> obj-$(CONFIG_PWM_SAMSUNG) += pwm-samsung.o
> +obj-$(CONFIG_PWM_SIFIVE) += pwm-sifive.o
> obj-$(CONFIG_PWM_SPEAR) += pwm-spear.o
> obj-$(CONFIG_PWM_STI) += pwm-sti.o
> obj-$(CONFIG_PWM_STM32) += pwm-stm32.o
> diff --git a/drivers/pwm/pwm-sifive.c b/drivers/pwm/pwm-sifive.c
> new file mode 100644
> index 0000000..4b4d48e
> --- /dev/null
> +++ b/drivers/pwm/pwm-sifive.c
> @@ -0,0 +1,334 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * Copyright (C) 2017-2018 SiFive
> + * For SiFive's PWM IP block documentation please refer Chapter 14 of
> + * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
> + *
> + * Limitations:
> + * - When changing both duty cycle and period, we cannot prevent in
> + * software that the output might produce a period with mixed
> + * settings (new period length and old duty cycle).
> + * - The hardware cannot generate a 100% duty cycle.
> + * - The hardware generates only inverted output.
> + */
> +#include <linux/clk.h>
> +#include <linux/io.h>
> +#include <linux/module.h>
> +#include <linux/platform_device.h>
> +#include <linux/pwm.h>
> +#include <linux/slab.h>
> +#include <linux/bitfield.h>
> +
> +/* Register offsets */
> +#define PWM_SIFIVE_PWMCFG 0x0
> +#define PWM_SIFIVE_PWMCOUNT 0x8
> +#define PWM_SIFIVE_PWMS 0x10
> +#define PWM_SIFIVE_PWMCMP0 0x20
> +
> +/* PWMCFG fields */
> +#define PWM_SIFIVE_PWMCFG_SCALE GENMASK(3, 0)
> +#define PWM_SIFIVE_PWMCFG_STICKY BIT(8)
> +#define PWM_SIFIVE_PWMCFG_ZERO_CMP BIT(9)
> +#define PWM_SIFIVE_PWMCFG_DEGLITCH BIT(10)
> +#define PWM_SIFIVE_PWMCFG_EN_ALWAYS BIT(12)
> +#define PWM_SIFIVE_PWMCFG_EN_ONCE BIT(13)
> +#define PWM_SIFIVE_PWMCFG_CENTER BIT(16)
> +#define PWM_SIFIVE_PWMCFG_GANG BIT(24)
> +#define PWM_SIFIVE_PWMCFG_IP BIT(28)
> +
> +/* PWM_SIFIVE_SIZE_PWMCMP is used to calculate offset for pwmcmpX registers */
> +#define PWM_SIFIVE_SIZE_PWMCMP 4
> +#define PWM_SIFIVE_CMPWIDTH 16
> +#define PWM_SIFIVE_DEFAULT_PERIOD 10000000
> +
> +struct pwm_sifive_ddata {
> + struct pwm_chip chip;
> + struct mutex lock; /* lock to protect user_count */
> + struct notifier_block notifier;
> + struct clk *clk;
> + void __iomem *regs;
> + unsigned int real_period;
> + unsigned int approx_period;
> + int user_count;
> +};
> +
> +static inline
> +struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
> +{
> + return container_of(c, struct pwm_sifive_ddata, chip);
> +}
> +
> +static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *dev)
> +{
> + struct pwm_sifive_ddata *pwm = pwm_sifive_chip_to_ddata(chip);
> +
> + mutex_lock(&pwm->lock);
> + pwm->user_count++;
> + mutex_unlock(&pwm->lock);
> +
> + return 0;
> +}
> +
> +static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *dev)
> +{
> + struct pwm_sifive_ddata *pwm = pwm_sifive_chip_to_ddata(chip);
> +
> + mutex_lock(&pwm->lock);
> + pwm->user_count--;
> + mutex_unlock(&pwm->lock);
> +}
> +
> +static void pwm_sifive_update_clock(struct pwm_sifive_ddata *pwm,
> + unsigned long rate)
> +{
> + u32 val;
> + unsigned long long num;
> + /*
> + * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
> + * period length is using pwmscale which provides the number of bits the
> + * counter is shifted before being feed to the comparators. A period
> + * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
> + * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
> + */
> + unsigned long scale_pow =
> + div64_ul(pwm->approx_period * (u64)rate, NSEC_PER_SEC);
> + int scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);

The situation here is as follows: The actual period length calculates
as:

period_length = (0x10000 << scale) / rate

Consider a clk rate of 600 MHz, then the driver maps "requested period"
to "actual period" as follows:

if requested_period <= 218453 ns:
// scale = 0
actual_period = 109226 ns
else if requested_period <= 436906 ns:
// scale = 1
actual_period = 218452 ns
else if requested_period <= 873812 ns:
// scale = 2
actual_period = 436904 ns
...
else if requested_period <= 3579139413 ns:
// scale = 14
actual_period = 1789569707 ns
else:
//scale = 15
actual_period = 3579139413 ns

There is an obvious rounding issue: If 218452 ns are requested, we
should end in the scale = 1 case for sure. (Similar issues exist for the
other cases.)

And then there are cases that are not that clear: What if 218000 ns are
requested? Where should the line be drawn? Thierry?

And what about long periods? The longest actually supported period
length is around 3.5 seconds. What if a consumer requests 18 seconds?
Where should the line be drawn when the driver is supposed to return
-EINVAL (or -ERANGE)? Thierry?

> + val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
> + FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
> + writel(val, pwm->regs + PWM_SIFIVE_PWMCFG);

Starting with this write the new period length might be active with the
previous duty cycle. Is this worth a comment? I think the window where
this can actually happen should be made as small as possible, so it
would be great to first calculate both register values and then write
them in two consecutive writels.

> + /* As scale <= 15 the shift operation cannot overflow. */
> + num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
> + pwm->real_period = div64_ul(num, rate);

What about rounding here? I'd say use "round closest" instead of "round
down".

> + dev_dbg(pwm->chip.dev, "New real_period = %u ns\n", pwm->real_period);
> +}
> +
> +static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *dev,
> + struct pwm_state *state)
> +{
> + struct pwm_sifive_ddata *pwm = pwm_sifive_chip_to_ddata(chip);
> + u32 duty, val;
> +
> + duty = readl(pwm->regs + PWM_SIFIVE_PWMCMP0 +
> + dev->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
> +
> + state->enabled = duty > 0;
> +
> + val = readl(pwm->regs + PWM_SIFIVE_PWMCFG);
> + if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
> + state->enabled = false;
> +
> + state->period = pwm->real_period;
> + state->duty_cycle =
> + (u64)duty * pwm->real_period >> PWM_SIFIVE_CMPWIDTH;
> + state->polarity = PWM_POLARITY_INVERSED;

If the PWM was configured for { .period = 1000000, .duty_cycle =
1000000, .enabled = false, ... }, .get_state still returns .duty_cycle =
0. Is this acceptable?

> +}
> +
> +static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
> +{
> + struct pwm_sifive_ddata *pwm = pwm_sifive_chip_to_ddata(chip);
> + int ret;
> +
> + if (enable) {
> + ret = clk_enable(pwm->clk);
> + if (ret) {
> + dev_err(pwm->chip.dev, "Enable clk failed:%d\n", ret);

Space after : please. Also applies to the other error strings.

> + return ret;
> + }
> + }
> +
> + if (!enable)
> + clk_disable(pwm->clk);
> +
> + return 0;
> +}
> +
> +static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *dev,
> + struct pwm_state *state)
> +{
> + struct pwm_sifive_ddata *pwm = pwm_sifive_chip_to_ddata(chip);

I think it would be more common to call the struct pwm_device pointer
"pwm" and the struct pwm_sifive_ddata pointer "ddata".
"dev" is usually a pointer to a struct device. The other functions need
the same adaption of course.

> + unsigned int duty_cycle;
> + u32 frac;
> + struct pwm_state cur_state;
> + bool enabled;
> + int ret = 0;
> + unsigned long long num;
> +
> + if (state->polarity != PWM_POLARITY_INVERSED)
> + return -EINVAL;
> +
> + ret = clk_enable(pwm->clk);
> + if (ret) {
> + dev_err(pwm->chip.dev, "Enable clk failed:%d\n", ret);
> + return ret;
> + }
> +
> + mutex_lock(&pwm->lock);
> + cur_state = dev->state;
> + enabled = cur_state.enabled;
> +
> + if (state->period != pwm->approx_period) {
> + if (pwm->user_count != 1) {
> + ret = -EBUSY;
> + goto exit;
> + }
> + pwm->approx_period = state->period;
> + pwm_sifive_update_clock(pwm, clk_get_rate(pwm->clk));
> + }
> +
> + duty_cycle = state->duty_cycle;
> + if (!state->enabled)
> + duty_cycle = 0;
> +
> + num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
> + frac = DIV_ROUND_CLOSEST_ULL(num, state->period);
> + /* The hardware cannot generate a 100% duty cycle */
> + frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
> +
> + writel(frac, pwm->regs + PWM_SIFIVE_PWMCMP0 +
> + dev->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);

Here is another rounding question. Given that the period length can only
be modified by factors of two there are cases where the real period is
off by a factor of at least 1.4 which has an effect on the duty cycle.
Consider again an input clk rate of 600 MHz, and:

.duty_cycle = 109226 [ns]
.period = 152916 [ns]

We either have to go for real period = 109226 ns (as is currently
implemented) or with 218452 ns. Which one should be chosen I already
asked above. Here the question is (probably depending on the former
question) how should the actual duty_cycle be calculated?

> + if (state->enabled != enabled) {
> + ret = pwm_sifive_enable(chip, state->enabled);
> + if (ret)
> + goto exit;

This goto is a noop and so can be dropped.

> + }
> +
> +exit:
> + clk_disable(pwm->clk);
> + mutex_unlock(&pwm->lock);
> + return ret;
> +}
> +
> +static const struct pwm_ops pwm_sifive_ops = {
> + .request = pwm_sifive_request,
> + .free = pwm_sifive_free,
> + .get_state = pwm_sifive_get_state,
> + .apply = pwm_sifive_apply,
> + .owner = THIS_MODULE,
> +};
> +
> +static int pwm_sifive_clock_notifier(struct notifier_block *nb,
> + unsigned long event, void *data)
> +{
> + struct clk_notifier_data *ndata = data;
> + struct pwm_sifive_ddata *pwm =
> + container_of(nb, struct pwm_sifive_ddata, notifier);
> +
> + if (event == POST_RATE_CHANGE)
> + pwm_sifive_update_clock(pwm, ndata->new_rate);
> +
> + return NOTIFY_OK;
> +}
> +
> +static int pwm_sifive_probe(struct platform_device *pdev)
> +{
> + struct device *dev = &pdev->dev;
> + struct pwm_sifive_ddata *pwm;
> + struct pwm_chip *chip;
> + struct resource *res;
> + int ret;
> +
> + pwm = devm_kzalloc(dev, sizeof(*pwm), GFP_KERNEL);
> + if (!pwm)
> + return -ENOMEM;
> +
> + mutex_init(&pwm->lock);
> + chip = &pwm->chip;
> + chip->dev = dev;
> + chip->ops = &pwm_sifive_ops;
> + chip->of_pwm_n_cells = 3;
> + chip->base = -1;
> + chip->npwm = 4;
> +
> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + pwm->regs = devm_ioremap_resource(dev, res);
> + if (IS_ERR(pwm->regs)) {
> + dev_err(dev, "Unable to map IO resources\n");
> + return PTR_ERR(pwm->regs);
> + }
> +
> + pwm->clk = devm_clk_get(dev, NULL);
> + if (IS_ERR(pwm->clk)) {
> + if (PTR_ERR(pwm->clk) != -EPROBE_DEFER)
> + dev_err(dev, "Unable to find controller clock\n");
> + return PTR_ERR(pwm->clk);
> + }
> +
> + ret = clk_prepare_enable(pwm->clk);
> + if (ret) {
> + dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
> + return ret;
> + }
> +
> + /* Watch for changes to underlying clock frequency */
> + pwm->notifier.notifier_call = pwm_sifive_clock_notifier;
> + ret = clk_notifier_register(pwm->clk, &pwm->notifier);

Is it a problem when the notifier is called before pwmchip_add was
called? Out of interest: Is a real problem addressed here? I.e.: Does
the input clock actually change in practise? Also note that
pwm_sifive_clock_notifier only adapts the period but not the duty cycle
(any more).

Given that a clk rate change affects the output, I wonder if the change
should be declined if the pwm is running.

> + if (ret) {
> + dev_err(dev, "failed to register clock notifier: %d\n", ret);
> + goto disable_clk;
> + }
> +
> + /* Initialize PWM */
> + pwm->approx_period = PWM_SIFIVE_DEFAULT_PERIOD;
> + pwm_sifive_update_clock(pwm, clk_get_rate(pwm->clk));

If the bootloader setup a display with a backlight driven by a PWM it
would be ideal to not modify the already running hardware here.

> + ret = pwmchip_add(chip);
> + if (ret < 0) {
> + dev_err(dev, "cannot register PWM: %d\n", ret);
> + goto unregister_clk;
> + }
> +
> + platform_set_drvdata(pdev, pwm);
> + dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
> +
> + return 0;
> +
> +unregister_clk:
> + clk_notifier_unregister(pwm->clk, &pwm->notifier);
> +disable_clk:
> + clk_disable_unprepare(pwm->clk);
> +
> + return ret;
> +}
> +
> +static int pwm_sifive_remove(struct platform_device *dev)
> +{
> + struct pwm_sifive_ddata *pwm = platform_get_drvdata(dev);
> + int ret, ch;
> + bool is_enabled = false;
> +
> + ret = pwmchip_remove(&pwm->chip);
> + clk_notifier_unregister(pwm->clk, &pwm->notifier);
> +
> + for (ch = 0; ch < pwm->chip.npwm; ch++) {
> + if (pwm_is_enabled(&pwm->chip.pwms[ch])) {

Here is another consumer API function call.

> + is_enabled = true;
> + break;
> + }
> + }
> + if (is_enabled)
> + clk_disable(pwm->clk);
> + clk_unprepare(pwm->clk);

I think you're leaking a clk_enable here. The probe function does one
unconditionally that is never undone.

> + return ret;
> +}
> +
> +static const struct of_device_id pwm_sifive_of_match[] = {
> + { .compatible = "sifive,pwm0" },
> + {},
> +};
> +MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
> +
> +static struct platform_driver pwm_sifive_driver = {
> + .probe = pwm_sifive_probe,
> + .remove = pwm_sifive_remove,
> + .driver = {
> + .name = "pwm-sifive",
> + .of_match_table = pwm_sifive_of_match,
> + },
> +};
> +module_platform_driver(pwm_sifive_driver);
> +
> +MODULE_DESCRIPTION("SiFive PWM driver");
> +MODULE_LICENSE("GPL v2");

Best regards
Uwe

--
Pengutronix e.K. | Uwe Kleine-König |
Industrial Linux Solutions | http://www.pengutronix.de/ |

\
 
 \ /
  Last update: 2019-03-18 22:47    [W:0.077 / U:0.272 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site