lkml.org 
[lkml]   [2018]   [Aug]   [24]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
SubjectRe: [PATCH] mm, oom: distinguish blockable mode for mmu notifiers
From
Date
Am 24.08.2018 um 15:40 schrieb Michal Hocko:
> On Fri 24-08-18 15:28:33, Christian König wrote:
>> Am 24.08.2018 um 15:24 schrieb Michal Hocko:
>>> On Fri 24-08-18 15:10:08, Christian König wrote:
>>>> Am 24.08.2018 um 15:01 schrieb Michal Hocko:
>>>>> On Fri 24-08-18 14:52:26, Christian König wrote:
>>>>>> Am 24.08.2018 um 14:33 schrieb Michal Hocko:
>>>>> [...]
>>>>>>> Thiking about it some more, I can imagine that a notifier callback which
>>>>>>> performs an allocation might trigger a memory reclaim and that in turn
>>>>>>> might trigger a notifier to be invoked and recurse. But notifier
>>>>>>> shouldn't really allocate memory. They are called from deep MM code
>>>>>>> paths and this would be extremely deadlock prone. Maybe Jerome can come
>>>>>>> up some more realistic scenario. If not then I would propose to simplify
>>>>>>> the locking here. We have lockdep to catch self deadlocks and it is
>>>>>>> always better to handle a specific issue rather than having a code
>>>>>>> without a clear indication how it can recurse.
>>>>>> Well I agree that we should probably fix that, but I have some concerns to
>>>>>> remove the existing workaround.
>>>>>>
>>>>>> See we added that to get rid of a real problem in a customer environment and
>>>>>> I don't want to that to show up again.
>>>>> It would really help to know more about that case and fix it properly
>>>>> rather than workaround it like this. Anyway, let me think how to handle
>>>>> the non-blocking notifier invocation then. I was not able to come up
>>>>> with anything remotely sane yet.
>>>> With avoiding allocating memory in the write lock path I don't see an issue
>>>> any more with that.
>>>>
>>>> All what the write lock path does now is adding items to a linked lists,
>>>> arrays etc....
>>> Can we change it to non-sleepable lock then?
>> No, the write side doesn't sleep any more, but the read side does.
>>
>> See amdgpu_mn_invalidate_node() and that is where you actually need to
>> handle the non-blocking flag correctly.
> Ohh, right you are. We already handle that by bailing out before calling
> amdgpu_mn_invalidate_node in !blockable mode.

Yeah, that is sufficient.

It could be improved because we have something like 90% chance that
amdgpu_mn_invalidate_node() actually doesn't need to do anything.

But I can take care of that when the patch set has landed.

> So does this looks good to
> you?

Yeah, that looks perfect to me. Reviewed-by: Christian König
<christian.koenig@amd.com>

Thanks,
Christian.

>
> diff --git a/drivers/gpu/drm/amd/amdgpu/amdgpu_mn.c b/drivers/gpu/drm/amd/amdgpu/amdgpu_mn.c
> index e55508b39496..48fa152231be 100644
> --- a/drivers/gpu/drm/amd/amdgpu/amdgpu_mn.c
> +++ b/drivers/gpu/drm/amd/amdgpu/amdgpu_mn.c
> @@ -180,11 +180,15 @@ void amdgpu_mn_unlock(struct amdgpu_mn *mn)
> */
> static int amdgpu_mn_read_lock(struct amdgpu_mn *amn, bool blockable)
> {
> - if (blockable)
> - mutex_lock(&amn->read_lock);
> - else if (!mutex_trylock(&amn->read_lock))
> - return -EAGAIN;
> -
> + /*
> + * We can take sleepable lock even on !blockable mode because
> + * read_lock is only ever take from this path and the notifier
> + * lock never really sleeps. In fact the only reason why the
> + * later is sleepable is because the notifier itself might sleep
> + * in amdgpu_mn_invalidate_node but blockable mode is handled
> + * before calling into that path.
> + */
> + mutex_lock(&amn->read_lock);
> if (atomic_inc_return(&amn->recursion) == 1)
> down_read_non_owner(&amn->lock);
> mutex_unlock(&amn->read_lock);

\
 
 \ /
  Last update: 2018-08-24 15:44    [W:0.101 / U:0.208 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site