lkml.org 
[lkml]   [2015]   [Jun]   [15]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
Date
SubjectRe: [PATCH v7 1/3] nand: pl353: Add basic driver for arm pl353 smc nand interface
From
Ping.

Regards,
Punnaiah

On Mon, Jun 8, 2015 at 11:38 PM, Punnaiah Choudary Kalluri
<punnaiah.choudary.kalluri@xilinx.com> wrote:
> Add driver for arm pl353 static memory controller nand interface with
> HW ECC support. This controller is used in xilinx zynq soc for interfacing
> the nand flash memory.
>
> Signed-off-by: Punnaiah Choudary Kalluri <punnaia@xilinx.com>
> ---
> Changes in v7:
> - Currently not implemented the memclk rate adjustments. I will
> look into this later and once the basic driver is accepted.
> - Fixed GPL licence ident
> Changes in v6:
> - Fixed the checkpatch.pl reported warnings
> - Using the address cycles information from the onfi param page
> earlier it is hardcoded to 5 in driver
> Changes in v5:
> - Configure the nand timing parameters as per the onfi spec
> Changes in v4:
> - Updated the driver to sync with pl353_smc driver APIs
> Changes in v3:
> - implemented the proper error codes
> - further breakdown this patch to multiple sets
> - added the controller and driver details to Documentation section
> - updated the licenece to GPLv2
> - reorganized the pl353_nand_ecc_init function
> Changes in v2:
> - use "depends on" rather than "select" option in kconfig
> - remove unused variable parts
> - remove dummy helper and use writel_relaxed directly
> ---
> drivers/mtd/nand/Kconfig | 7 +
> drivers/mtd/nand/Makefile | 1 +
> drivers/mtd/nand/pl353_nand.c | 909 +++++++++++++++++++++++++++++++++++++++++
> 3 files changed, 917 insertions(+), 0 deletions(-)
> create mode 100644 drivers/mtd/nand/pl353_nand.c
>
> diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
> index 5897d8d..c14a955 100644
> --- a/drivers/mtd/nand/Kconfig
> +++ b/drivers/mtd/nand/Kconfig
> @@ -497,6 +497,13 @@ config MTD_NAND_NUC900
> This enables the driver for the NAND Flash on evaluation board based
> on w90p910 / NUC9xx.
>
> +config MTD_NAND_PL353
> + tristate "ARM Pl353 NAND flash driver"
> + depends on MTD_NAND && ARM
> + depends on PL353_SMC
> + help
> + This enables access to the NAND flash device on PL353 SMC controller.
> +
> config MTD_NAND_JZ4740
> tristate "Support for JZ4740 SoC NAND controller"
> depends on MACH_JZ4740
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 582bbd05..c68fd7c 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o
> obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
> obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
> obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
> +obj-$(CONFIG_MTD_NAND_PL353) += pl353_nand.o
>
> nand-objs := nand_base.o nand_bbt.o nand_timings.o
> diff --git a/drivers/mtd/nand/pl353_nand.c b/drivers/mtd/nand/pl353_nand.c
> new file mode 100644
> index 0000000..ff6cf3e
> --- /dev/null
> +++ b/drivers/mtd/nand/pl353_nand.c
> @@ -0,0 +1,909 @@
> +/*
> + * ARM PL353 NAND Flash Controller Driver
> + *
> + * Copyright (C) 2009 - 2014 Xilinx, Inc.
> + *
> + * This driver is based on plat_nand.c and mxc_nand.c drivers
> + *
> + * This program is free software; you can redistribute it and/or modify it under
> + * the terms of the GNU General Public License version 2 as published by the
> + * Free Software Foundation; either version 2 of the License, or (at your
> + * option) any later version.
> + */
> +
> +#include <linux/err.h>
> +#include <linux/delay.h>
> +#include <linux/interrupt.h>
> +#include <linux/io.h>
> +#include <linux/ioport.h>
> +#include <linux/irq.h>
> +#include <linux/memory/pl353-smc.h>
> +#include <linux/module.h>
> +#include <linux/moduleparam.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/nand.h>
> +#include <linux/mtd/nand_ecc.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/of_address.h>
> +#include <linux/of_device.h>
> +#include <linux/of_mtd.h>
> +#include <linux/of_platform.h>
> +#include <linux/platform_device.h>
> +#include <linux/slab.h>
> +
> +#define PL353_NAND_DRIVER_NAME "pl353-nand"
> +
> +/* NAND flash driver defines */
> +#define PL353_NAND_CMD_PHASE 1 /* End command valid in command phase */
> +#define PL353_NAND_DATA_PHASE 2 /* End command valid in data phase */
> +#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */
> +
> +/* Flash memory controller operating parameters */
> +
> +#define PL353_NAND_ECC_CONFIG (BIT(4) | /* ECC read at end of page */ \
> + (0 << 5)) /* No Jumping */
> +
> +/* AXI Address definitions */
> +#define START_CMD_SHIFT 3
> +#define END_CMD_SHIFT 11
> +#define END_CMD_VALID_SHIFT 20
> +#define ADDR_CYCLES_SHIFT 21
> +#define CLEAR_CS_SHIFT 21
> +#define ECC_LAST_SHIFT 10
> +#define COMMAND_PHASE (0 << 19)
> +#define DATA_PHASE BIT(19)
> +
> +#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set ECC_Last */
> +#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip select */
> +
> +#define ONDIE_ECC_FEATURE_ADDR 0x90
> +#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ)
> +#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ)
> +#define PL353_NAND_LAST_TRANSFER_LENGTH 4
> +
> +/**
> + * struct pl353_nand_command_format - Defines NAND flash command format
> + * @start_cmd: First cycle command (Start command)
> + * @end_cmd: Second cycle command (Last command)
> + * @addr_cycles: Number of address cycles required to send the address
> + * @end_cmd_valid: The second cycle command is valid for cmd or data phase
> + */
> +struct pl353_nand_command_format {
> + int start_cmd;
> + int end_cmd;
> + u8 addr_cycles;
> + u8 end_cmd_valid;
> +};
> +
> +/**
> + * struct pl353_nand_info - Defines the NAND flash driver instance
> + * @chip: NAND chip information structure
> + * @mtd: MTD information structure
> + * @nand_base: Virtual address of the NAND flash device
> + * @end_cmd_pending: End command is pending
> + * @end_cmd: End command
> + * @ecc_mode: ECC mode
> + * @raddr_cycles: Row address cycles
> + * @caddr_cycles: Column address cycles
> + */
> +struct pl353_nand_info {
> + struct nand_chip chip;
> + struct mtd_info mtd;
> + void __iomem *nand_base;
> + unsigned long end_cmd_pending;
> + unsigned long end_cmd;
> + int ecc_mode;
> + u8 raddr_cycles;
> + u8 caddr_cycles;
> +};
> +
> +/*
> + * The NAND flash operations command format
> + */
> +static const struct pl353_nand_command_format pl353_nand_commands[] = {
> + {NAND_CMD_READ0, NAND_CMD_READSTART, 5, PL353_NAND_CMD_PHASE},
> + {NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, PL353_NAND_CMD_PHASE},
> + {NAND_CMD_READID, NAND_CMD_NONE, 1, NAND_CMD_NONE},
> + {NAND_CMD_STATUS, NAND_CMD_NONE, 0, NAND_CMD_NONE},
> + {NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, PL353_NAND_DATA_PHASE},
> + {NAND_CMD_RNDIN, NAND_CMD_NONE, 2, NAND_CMD_NONE},
> + {NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, PL353_NAND_CMD_PHASE},
> + {NAND_CMD_RESET, NAND_CMD_NONE, 0, NAND_CMD_NONE},
> + {NAND_CMD_PARAM, NAND_CMD_NONE, 1, NAND_CMD_NONE},
> + {NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, NAND_CMD_NONE},
> + {NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, NAND_CMD_NONE},
> + {NAND_CMD_NONE, NAND_CMD_NONE, 0, 0},
> + /* Add all the flash commands supported by the flash device and Linux */
> + /*
> + * The cache program command is not supported by driver because driver
> + * cant differentiate between page program and cached page program from
> + * start command, these commands can be differentiated through end
> + * command, which doesn't fit in to the driver design. The cache program
> + * command is not supported by NAND subsystem also, look at 1612 line
> + * number (in nand_write_page function) of nand_base.c file.
> + * {NAND_CMD_SEQIN, NAND_CMD_CACHEDPROG, 5, PL353_NAND_YES},
> + */
> +};
> +
> +/* Define default oob placement schemes for large and small page devices */
> +static struct nand_ecclayout nand_oob_16 = {
> + .eccbytes = 3,
> + .eccpos = {0, 1, 2},
> + .oobfree = {
> + {.offset = 8,
> + . length = 8} }
> +};
> +
> +static struct nand_ecclayout nand_oob_64 = {
> + .eccbytes = 12,
> + .eccpos = {
> + 52, 53, 54, 55, 56, 57,
> + 58, 59, 60, 61, 62, 63},
> + .oobfree = {
> + {.offset = 2,
> + .length = 50} }
> +};
> +
> +static unsigned int get_cyc_from_ns(u32 clkrate, u32 ns)
> +{
> + unsigned int cycle;
> +
> + cycle = NSEC_PER_SEC / clkrate;
> + return DIV_ROUND_CLOSEST(ns, cycle);
> +}
> +
> +/**
> + * pl353_nand_calculate_hwecc - Calculate Hardware ECC
> + * @mtd: Pointer to the mtd_info structure
> + * @data: Pointer to the page data
> + * @ecc_code: Pointer to the ECC buffer where ECC data needs to be stored
> + *
> + * This function retrieves the Hardware ECC data from the controller and returns
> + * ECC data back to the MTD subsystem.
> + *
> + * Return: 0 on success or error value on failure
> + */
> +static int pl353_nand_calculate_hwecc(struct mtd_info *mtd,
> + const u8 *data, u8 *ecc_code)
> +{
> + u32 ecc_value, ecc_status;
> + u8 ecc_reg, ecc_byte;
> + unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
> +
> + /* Wait till the ECC operation is complete or timeout */
> + do {
> + if (pl353_smc_ecc_is_busy(mtd->dev.parent))
> + cpu_relax();
> + else
> + break;
> + } while (!time_after_eq(jiffies, timeout));
> +
> + if (time_after_eq(jiffies, timeout)) {
> + pr_err("%s timed out\n", __func__);
> + return -ETIMEDOUT;
> + }
> +
> + for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
> + /* Read ECC value for each block */
> + ecc_value = pl353_smc_get_ecc_val(mtd->dev.parent, ecc_reg);
> + ecc_status = (ecc_value >> 24) & 0xFF;
> + /* ECC value valid */
> + if (ecc_status & 0x40) {
> + for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
> + /* Copy ECC bytes to MTD buffer */
> + *ecc_code = ecc_value & 0xFF;
> + ecc_value = ecc_value >> 8;
> + ecc_code++;
> + }
> + } else {
> + pr_warn("%s status failed\n", __func__);
> + return -EINVAL;
> + }
> + }
> + return 0;
> +}
> +
> +/**
> + * onehot - onehot function
> + * @value: Value to check for onehot
> + *
> + * This function checks whether a value is onehot or not.
> + * onehot is if and only if onebit is set.
> + *
> + * Return: 1 if it is onehot else 0
> + */
> +static int onehot(unsigned short value)
> +{
> + return (value & (value - 1)) == 0;
> +}
> +
> +/**
> + * pl353_nand_correct_data - ECC correction function
> + * @mtd: Pointer to the mtd_info structure
> + * @buf: Pointer to the page data
> + * @read_ecc: Pointer to the ECC value read from spare data area
> + * @calc_ecc: Pointer to the calculated ECC value
> + *
> + * This function corrects the ECC single bit errors & detects 2-bit errors.
> + *
> + * Return: 0 if no ECC errors found
> + * 1 if single bit error found and corrected.
> + * -1 if multiple ECC errors found.
> + */
> +static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
> + unsigned char *read_ecc,
> + unsigned char *calc_ecc)
> +{
> + unsigned char bit_addr;
> + unsigned int byte_addr;
> + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
> + unsigned short calc_ecc_lower, calc_ecc_upper;
> +
> + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
> + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;
> +
> + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
> + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;
> +
> + ecc_odd = read_ecc_lower ^ calc_ecc_lower;
> + ecc_even = read_ecc_upper ^ calc_ecc_upper;
> +
> + if ((ecc_odd == 0) && (ecc_even == 0))
> + return 0; /* no error */
> +
> + if (ecc_odd == (~ecc_even & 0xfff)) {
> + /* bits [11:3] of error code is byte offset */
> + byte_addr = (ecc_odd >> 3) & 0x1ff;
> + /* bits [2:0] of error code is bit offset */
> + bit_addr = ecc_odd & 0x7;
> + /* Toggling error bit */
> + buf[byte_addr] ^= (1 << bit_addr);
> + return 1;
> + }
> +
> + if (onehot(ecc_odd | ecc_even) == 1)
> + return 1; /* one error in parity */
> +
> + return -EBADMSG; /* Uncorrectable error */
> +}
> +
> +/**
> + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function
> + * @mtd: Pointer to the mtd info structure
> + * @chip: Pointer to the NAND chip info structure
> + * @page: Page number to read
> + *
> + * Return: Always return zero
> + */
> +static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
> + int page)
> +{
> + unsigned long data_phase_addr;
> + uint8_t *p;
> +
> + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
> +
> + p = chip->oob_poi;
> + chip->read_buf(mtd, p,
> + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
> + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
> + data_phase_addr |= PL353_NAND_CLEAR_CS;
> + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
> + chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function
> + * @mtd: Pointer to the mtd info structure
> + * @chip: Pointer to the NAND chip info structure
> + * @page: Page number to write
> + *
> + * Return: Zero on success and EIO on failure
> + */
> +static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
> + int page)
> +{
> + int status = 0;
> + const uint8_t *buf = chip->oob_poi;
> + unsigned long data_phase_addr;
> +
> + chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
> +
> + chip->write_buf(mtd, buf,
> + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
> + buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
> + data_phase_addr |= PL353_NAND_CLEAR_CS;
> + data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
> + chip->write_buf(mtd, buf, PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + /* Send command to program the OOB data */
> + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
> + status = chip->waitfunc(mtd, chip);
> +
> + return status & NAND_STATUS_FAIL ? -EIO : 0;
> +}
> +
> +/**
> + * nand_write_page_hwecc - Hardware ECC based page write function
> + * @mtd: Pointer to the mtd info structure
> + * @chip: Pointer to the NAND chip info structure
> + * @buf: Pointer to the data buffer
> + * @oob_required: Caller requires OOB data read to chip->oob_poi
> + *
> + * This functions writes data and hardware generated ECC values in to the page.
> + *
> + * Return: Zero on success and error on failure.
> + */
> +static int pl353_nand_write_page_hwecc(struct mtd_info *mtd,
> + struct nand_chip *chip, const uint8_t *buf,
> + int oob_required)
> +{
> + int i, status, eccsize = chip->ecc.size;
> + int eccsteps = chip->ecc.steps;
> + uint8_t *ecc_calc = chip->buffers->ecccalc;
> + const uint8_t *p = buf;
> + uint32_t *eccpos = chip->ecc.layout->eccpos;
> + unsigned long data_phase_addr;
> + uint8_t *oob_ptr;
> +
> + for ( ; (eccsteps - 1); eccsteps--) {
> + chip->write_buf(mtd, p, eccsize);
> + p += eccsize;
> + }
> + chip->write_buf(mtd, p, (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
> + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + /* Set ECC Last bit to 1 */
> + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
> + data_phase_addr |= PL353_NAND_ECC_LAST;
> + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
> + chip->write_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + /* Wait for ECC to be calculated and read the error values */
> + p = buf;
> + status = chip->ecc.calculate(mtd, p, &ecc_calc[0]);
> + if (status)
> + return status;
> +
> + for (i = 0; i < chip->ecc.total; i++)
> + chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]);
> +
> + /* Clear ECC last bit */
> + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
> + data_phase_addr &= ~PL353_NAND_ECC_LAST;
> + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
> +
> + /* Write the spare area with ECC bytes */
> + oob_ptr = chip->oob_poi;
> + chip->write_buf(mtd, oob_ptr,
> + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
> +
> + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
> + data_phase_addr |= PL353_NAND_CLEAR_CS;
> + data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
> + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> + chip->write_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_read_page_hwecc - Hardware ECC based page read function
> + * @mtd: Pointer to the mtd info structure
> + * @chip: Pointer to the NAND chip info structure
> + * @buf: Pointer to the buffer to store read data
> + * @oob_required: Caller requires OOB data read to chip->oob_poi
> + * @page: Page number to read
> + *
> + * This functions reads data and checks the data integrity by comparing hardware
> + * generated ECC values and read ECC values from spare area.
> + *
> + * Return: 0 always and updates ECC operation status in to MTD structure
> + */
> +static int pl353_nand_read_page_hwecc(struct mtd_info *mtd,
> + struct nand_chip *chip,
> + uint8_t *buf, int oob_required, int page)
> +{
> + int i, stat, eccsize = chip->ecc.size;
> + int eccbytes = chip->ecc.bytes;
> + int eccsteps = chip->ecc.steps;
> + uint8_t *p = buf;
> + uint8_t *ecc_calc = chip->buffers->ecccalc;
> + uint8_t *ecc_code = chip->buffers->ecccode;
> + uint32_t *eccpos = chip->ecc.layout->eccpos;
> + unsigned long data_phase_addr;
> + uint8_t *oob_ptr;
> +
> + for ( ; (eccsteps - 1); eccsteps--) {
> + chip->read_buf(mtd, p, eccsize);
> + p += eccsize;
> + }
> + chip->read_buf(mtd, p, (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
> + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + /* Set ECC Last bit to 1 */
> + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
> + data_phase_addr |= PL353_NAND_ECC_LAST;
> + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
> + chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + /* Read the calculated ECC value */
> + p = buf;
> + stat = chip->ecc.calculate(mtd, p, &ecc_calc[0]);
> + if (stat < 0)
> + return stat;
> +
> + /* Clear ECC last bit */
> + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
> + data_phase_addr &= ~PL353_NAND_ECC_LAST;
> + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
> +
> + /* Read the stored ECC value */
> + oob_ptr = chip->oob_poi;
> + chip->read_buf(mtd, oob_ptr,
> + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
> +
> + /* de-assert chip select */
> + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
> + data_phase_addr |= PL353_NAND_CLEAR_CS;
> + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
> +
> + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> + chip->read_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> + for (i = 0; i < chip->ecc.total; i++)
> + ecc_code[i] = ~(chip->oob_poi[eccpos[i]]);
> +
> + eccsteps = chip->ecc.steps;
> + p = buf;
> +
> + /* Check ECC error for all blocks and correct if it is correctable */
> + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
> + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
> + if (stat < 0)
> + mtd->ecc_stats.failed++;
> + else
> + mtd->ecc_stats.corrected += stat;
> + }
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_select_chip - Select the flash device
> + * @mtd: Pointer to the mtd info structure
> + * @chip: Pointer to the NAND chip info structure
> + *
> + * This function is empty as the NAND controller handles chip select line
> + * internally based on the chip address passed in command and data phase.
> + */
> +static void pl353_nand_select_chip(struct mtd_info *mtd, int chip)
> +{
> +
> +}
> +
> +/**
> + * pl353_nand_cmd_function - Send command to NAND device
> + * @mtd: Pointer to the mtd_info structure
> + * @command: The command to be sent to the flash device
> + * @column: The column address for this command, -1 if none
> + * @page_addr: The page address for this command, -1 if none
> + */
> +static void pl353_nand_cmd_function(struct mtd_info *mtd, unsigned int command,
> + int column, int page_addr)
> +{
> + struct nand_chip *chip = mtd->priv;
> + const struct pl353_nand_command_format *curr_cmd = NULL;
> + struct pl353_nand_info *xnand =
> + container_of(mtd, struct pl353_nand_info, mtd);
> + void __iomem *cmd_addr;
> + unsigned long cmd_data = 0, end_cmd_valid = 0;
> + unsigned long cmd_phase_addr, data_phase_addr, end_cmd, i;
> + unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;
> + u32 addrcycles;
> +
> + if (xnand->end_cmd_pending) {
> + /*
> + * Check for end command if this command request is same as the
> + * pending command then return
> + */
> + if (xnand->end_cmd == command) {
> + xnand->end_cmd = 0;
> + xnand->end_cmd_pending = 0;
> + return;
> + }
> + }
> +
> + /* Emulate NAND_CMD_READOOB for large page device */
> + if ((mtd->writesize > PL353_NAND_ECC_SIZE) &&
> + (command == NAND_CMD_READOOB)) {
> + column += mtd->writesize;
> + command = NAND_CMD_READ0;
> + }
> +
> + /* Get the command format */
> + for (i = 0; (pl353_nand_commands[i].start_cmd != NAND_CMD_NONE ||
> + pl353_nand_commands[i].end_cmd != NAND_CMD_NONE); i++)
> + if (command == pl353_nand_commands[i].start_cmd)
> + curr_cmd = &pl353_nand_commands[i];
> +
> + if (curr_cmd == NULL)
> + return;
> +
> + /* Clear interrupt */
> + pl353_smc_clr_nand_int(mtd->dev.parent);
> +
> + /* Get the command phase address */
> + if (curr_cmd->end_cmd_valid == PL353_NAND_CMD_PHASE)
> + end_cmd_valid = 1;
> +
> + if (curr_cmd->end_cmd == NAND_CMD_NONE)
> + end_cmd = 0x0;
> + else
> + end_cmd = curr_cmd->end_cmd;
> +
> + if ((command == NAND_CMD_READ0) && (command == NAND_CMD_SEQIN))
> + addrcycles = xnand->raddr_cycles + xnand->caddr_cycles;
> + else if (command == NAND_CMD_ERASE1)
> + addrcycles = xnand->raddr_cycles;
> + else
> + addrcycles = curr_cmd->addr_cycles;
> +
> + cmd_phase_addr = (unsigned long __force)xnand->nand_base |
> + (addrcycles << ADDR_CYCLES_SHIFT) |
> + (end_cmd_valid << END_CMD_VALID_SHIFT) |
> + (COMMAND_PHASE) |
> + (end_cmd << END_CMD_SHIFT) |
> + (curr_cmd->start_cmd << START_CMD_SHIFT);
> +
> + cmd_addr = (void __iomem * __force)cmd_phase_addr;
> +
> + /* Get the data phase address */
> + end_cmd_valid = 0;
> +
> + data_phase_addr = (unsigned long __force)xnand->nand_base |
> + (0x0 << CLEAR_CS_SHIFT) |
> + (end_cmd_valid << END_CMD_VALID_SHIFT) |
> + (DATA_PHASE) |
> + (end_cmd << END_CMD_SHIFT) |
> + (0x0 << ECC_LAST_SHIFT);
> +
> + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
> + chip->IO_ADDR_W = chip->IO_ADDR_R;
> +
> + /* Command phase AXI write */
> + /* Read & Write */
> + if (column != -1 && page_addr != -1) {
> + /* Adjust columns for 16 bit bus width */
> + if (chip->options & NAND_BUSWIDTH_16)
> + column >>= 1;
> + cmd_data = column;
> + if (mtd->writesize > PL353_NAND_ECC_SIZE) {
> + cmd_data |= page_addr << 16;
> + /* Another address cycle for devices > 128MiB */
> + if (chip->chipsize > (128 << 20)) {
> + writel_relaxed(cmd_data, cmd_addr);
> + cmd_data = (page_addr >> 16);
> + }
> + } else {
> + cmd_data |= page_addr << 8;
> + }
> + } else if (page_addr != -1) {
> + /* Erase */
> + cmd_data = page_addr;
> + } else if (column != -1) {
> + /*
> + * Change read/write column, read id etc
> + * Adjust columns for 16 bit bus width
> + */
> + if ((chip->options & NAND_BUSWIDTH_16) &&
> + ((command == NAND_CMD_READ0) ||
> + (command == NAND_CMD_SEQIN) ||
> + (command == NAND_CMD_RNDOUT) ||
> + (command == NAND_CMD_RNDIN)))
> + column >>= 1;
> + cmd_data = column;
> + }
> +
> + writel_relaxed(cmd_data, cmd_addr);
> +
> + if (curr_cmd->end_cmd_valid) {
> + xnand->end_cmd = curr_cmd->end_cmd;
> + xnand->end_cmd_pending = 1;
> + }
> +
> + ndelay(100);
> +
> + if ((command == NAND_CMD_READ0) ||
> + (command == NAND_CMD_RESET) ||
> + (command == NAND_CMD_PARAM) ||
> + (command == NAND_CMD_GET_FEATURES)) {
> +
> + /* Wait till the device is ready or timeout */
> + do {
> + if (chip->dev_ready(mtd))
> + break;
> + cpu_relax();
> + } while (!time_after_eq(jiffies, timeout));
> +
> + if (time_after_eq(jiffies, timeout))
> + pr_err("%s timed out\n", __func__);
> + return;
> + }
> +}
> +
> +/**
> + * pl353_nand_read_buf - read chip data into buffer
> + * @mtd: Pointer to the mtd info structure
> + * @buf: Pointer to the buffer to store read data
> + * @len: Number of bytes to read
> + */
> +static void pl353_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
> +{
> + int i;
> + struct nand_chip *chip = mtd->priv;
> + unsigned long *ptr = (unsigned long *)buf;
> +
> + len >>= 2;
> + for (i = 0; i < len; i++)
> + ptr[i] = readl(chip->IO_ADDR_R);
> +}
> +
> +/**
> + * pl353_nand_write_buf - write buffer to chip
> + * @mtd: Pointer to the mtd info structure
> + * @buf: Pointer to the buffer to store read data
> + * @len: Number of bytes to write
> + */
> +static void pl353_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
> + int len)
> +{
> + int i;
> + struct nand_chip *chip = mtd->priv;
> + unsigned long *ptr = (unsigned long *)buf;
> +
> + len >>= 2;
> +
> + for (i = 0; i < len; i++)
> + writel(ptr[i], chip->IO_ADDR_W);
> +}
> +
> +/**
> + * pl353_nand_device_ready - Check device ready/busy line
> + * @mtd: Pointer to the mtd_info structure
> + *
> + * Return: 0 on busy or 1 on ready state
> + */
> +static int pl353_nand_device_ready(struct mtd_info *mtd)
> +{
> + if (pl353_smc_get_nand_int_status_raw(mtd->dev.parent)) {
> + pl353_smc_clr_nand_int(mtd->dev.parent);
> + return 1;
> + }
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
> + * @mtd: Pointer to the mtd_info structure
> + *
> + * This function initializes the ecc block and functional pointers as per the
> + * ecc mode
> + *
> + * Return: Zero on success and error on failure.
> + */
> +static int pl353_nand_ecc_init(struct mtd_info *mtd)
> +{
> + struct nand_chip *nand_chip = mtd->priv;
> + struct pl353_nand_info *xnand =
> + container_of(mtd, struct pl353_nand_info, mtd);
> +
> + nand_chip->ecc.read_oob = pl353_nand_read_oob;
> + nand_chip->ecc.write_oob = pl353_nand_write_oob;
> + nand_chip->ecc.strength = 1;
> +
> + switch (xnand->ecc_mode) {
> + case NAND_ECC_HW:
> + if (mtd->writesize > 2048) {
> + pr_warn("hardware ECC not possible\n");
> + return -ENOTSUPP;
> + }
> +
> + nand_chip->ecc.mode = NAND_ECC_HW;
> + nand_chip->ecc.calculate = pl353_nand_calculate_hwecc;
> + nand_chip->ecc.correct = pl353_nand_correct_data;
> + nand_chip->ecc.hwctl = NULL;
> + nand_chip->ecc.read_page = pl353_nand_read_page_hwecc;
> + nand_chip->ecc.size = PL353_NAND_ECC_SIZE;
> + nand_chip->ecc.write_page = pl353_nand_write_page_hwecc;
> + pl353_smc_set_ecc_pg_size(mtd->dev.parent, mtd->writesize);
> + pl353_smc_set_ecc_mode(mtd->dev.parent, PL353_SMC_ECCMODE_APB);
> + /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
> + nand_chip->ecc.bytes = 3;
> +
> + if (mtd->oobsize == 16)
> + nand_chip->ecc.layout = &nand_oob_16;
> + else
> + nand_chip->ecc.layout = &nand_oob_64;
> +
> + break;
> + default:
> + return -ENOTSUPP;
> + }
> +
> + return 0;
> +}
> +
> +static int pl353_nand_init_timing(struct device *dev, int mode)
> +{
> + const struct nand_sdr_timings *time;
> + u32 t_rc, t_wc, t_rea, t_wp, t_clr, t_ar, t_rr;
> + ulong clkrate;
> +
> + time = onfi_async_timing_mode_to_sdr_timings(mode);
> + if (IS_ERR(time))
> + return PTR_ERR(time);
> +
> + clkrate = pl353_smc_get_clkrate(dev);
> + t_rc = get_cyc_from_ns(clkrate, time->tRC_min / 1000);
> + t_wc = get_cyc_from_ns(clkrate, time->tWC_min / 1000);
> + t_rea = get_cyc_from_ns(clkrate, time->tREA_max / 1000);
> + t_wp = get_cyc_from_ns(clkrate, time->tWP_min / 1000);
> + t_clr = get_cyc_from_ns(clkrate, time->tCLR_min / 1000);
> + t_ar = get_cyc_from_ns(clkrate, time->tAR_min / 1000);
> + t_rr = get_cyc_from_ns(clkrate, time->tRR_min / 1000);
> +
> + pl353_smc_set_cycles(dev, t_rc, t_wc, t_rea, t_wp, t_clr, t_ar, t_rr);
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_probe - Probe method for the NAND driver
> + * @pdev: Pointer to the platform_device structure
> + *
> + * This function initializes the driver data structures and the hardware.
> + *
> + * Return: 0 on success or error value on failure
> + */
> +static int pl353_nand_probe(struct platform_device *pdev)
> +{
> + struct pl353_nand_info *xnand;
> + struct mtd_info *mtd;
> + struct nand_chip *nand_chip;
> + struct resource *res;
> + struct mtd_part_parser_data ppdata;
> +
> + xnand = devm_kzalloc(&pdev->dev, sizeof(*xnand), GFP_KERNEL);
> + if (!xnand)
> + return -ENOMEM;
> +
> + /* Map physical address of NAND flash */
> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + xnand->nand_base = devm_ioremap_resource(&pdev->dev, res);
> + if (IS_ERR(xnand->nand_base))
> + return PTR_ERR(xnand->nand_base);
> +
> + /* Link the private data with the MTD structure */
> + mtd = &xnand->mtd;
> + nand_chip = &xnand->chip;
> +
> + nand_chip->priv = xnand;
> + mtd->priv = nand_chip;
> + mtd->dev.parent = pdev->dev.parent;
> + mtd->owner = THIS_MODULE;
> + mtd->name = PL353_NAND_DRIVER_NAME;
> +
> + /* Set address of NAND IO lines */
> + nand_chip->IO_ADDR_R = xnand->nand_base;
> + nand_chip->IO_ADDR_W = xnand->nand_base;
> +
> + /* Set the driver entry points for MTD */
> + nand_chip->cmdfunc = pl353_nand_cmd_function;
> + nand_chip->dev_ready = pl353_nand_device_ready;
> + nand_chip->select_chip = pl353_nand_select_chip;
> +
> + /* If we don't set this delay driver sets 20us by default */
> + nand_chip->chip_delay = 30;
> +
> + /* Buffer read/write routines */
> + nand_chip->read_buf = pl353_nand_read_buf;
> + nand_chip->write_buf = pl353_nand_write_buf;
> +
> + /* Set the device option and flash width */
> + nand_chip->options = NAND_BUSWIDTH_AUTO;
> + nand_chip->bbt_options = NAND_BBT_USE_FLASH;
> +
> + platform_set_drvdata(pdev, xnand);
> + if (pl353_nand_init_timing(pdev->dev.parent, 0))
> + return -ENOTSUPP;
> + /* First scan to find the device and get the page size */
> + if (nand_scan_ident(mtd, 1, NULL)) {
> + dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n");
> + return -ENXIO;
> + }
> +
> + xnand->ecc_mode = of_get_nand_ecc_mode(pdev->dev.of_node);
> + if (xnand->ecc_mode < 0)
> + xnand->ecc_mode = NAND_ECC_HW;
> +
> + if (nand_chip->onfi_version) {
> + xnand->raddr_cycles = nand_chip->onfi_params.addr_cycles & 0xF;
> + xnand->caddr_cycles =
> + (nand_chip->onfi_params.addr_cycles >> 4) & 0xF;
> + } else {
> + /*For non-ONFI devices, configuring the address cyles as 5 */
> + xnand->raddr_cycles = xnand->caddr_cycles = 5;
> + }
> +
> + if (pl353_nand_ecc_init(mtd))
> + return -ENOTSUPP;
> +
> + if (nand_chip->options & NAND_BUSWIDTH_16)
> + pl353_smc_set_buswidth(pdev->dev.parent,
> + PL353_SMC_MEM_WIDTH_16);
> +
> + /* TODO: Based on the parameter page info, change the timing mode */
> +
> + if (nand_scan_tail(mtd)) {
> + dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n");
> + return -ENXIO;
> + }
> +
> + ppdata.of_node = pdev->dev.of_node;
> +
> + mtd_device_parse_register(&xnand->mtd, NULL, &ppdata, NULL, 0);
> +
> + return 0;
> +}
> +
> +/**
> + * pl353_nand_remove - Remove method for the NAND driver
> + * @pdev: Pointer to the platform_device structure
> + *
> + * This function is called if the driver module is being unloaded. It frees all
> + * resources allocated to the device.
> + *
> + * Return: 0 on success or error value on failure
> + */
> +static int pl353_nand_remove(struct platform_device *pdev)
> +{
> + struct pl353_nand_info *xnand = platform_get_drvdata(pdev);
> +
> + /* Release resources, unregister device */
> + nand_release(&xnand->mtd);
> +
> + return 0;
> +}
> +
> +/* Match table for device tree binding */
> +static const struct of_device_id pl353_nand_of_match[] = {
> + { .compatible = "arm,pl353-nand-r2p1" },
> + {},
> +};
> +MODULE_DEVICE_TABLE(of, pl353_nand_of_match);
> +
> +/*
> + * pl353_nand_driver - This structure defines the NAND subsystem platform driver
> + */
> +static struct platform_driver pl353_nand_driver = {
> + .probe = pl353_nand_probe,
> + .remove = pl353_nand_remove,
> + .driver = {
> + .name = PL353_NAND_DRIVER_NAME,
> + .of_match_table = pl353_nand_of_match,
> + },
> +};
> +
> +module_platform_driver(pl353_nand_driver);
> +
> +MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
> +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
> +MODULE_LICENSE("GPL");
> --
> 1.7.4
>


\
 
 \ /
  Last update: 2015-06-15 06:41    [W:0.165 / U:0.288 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site