lkml.org 
[lkml]   [2014]   [Oct]   [13]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
From
SubjectRe: [PATCH v5] i2c: rk3x: adjust the LOW divison based on characteristics of SCL
Date
Hi Addy,

On Monday 13 October 2014 at 10:44:04, Addy Ke wrote:
> As show in I2C specification:
> - Standard-mode: the minimum HIGH period of the scl clock is 4.0us
> the minimum LOW period of the scl clock is 4.7us
> - Fast-mode: the minimum HIGH period of the scl clock is 0.6us
> the minimum LOW period of the scl clock is 1.3us
>
> I have measured i2c SCL waveforms in fast-mode by oscilloscope
> on rk3288-pinky board. the LOW period of the scl clock is 1.3us.
> It is so critical that we must adjust LOW division to increase
> the LOW period of the scl clock.
>
> Thanks Doug for the suggestion about division formulas.
>
> Tested-by: Heiko Stuebner <heiko@sntech.de>
> Reviewed-by: Doug Anderson <dianders@chromium.org>
> Tested-by: Doug Anderson <dianders@chromium.org>
> Signed-off-by: Addy Ke <addy.ke@rock-chips.com>
> ---
> Changes in v2:
> - remove Fast-mode plus and HS-mode
> - use new formulas suggested by Doug
> Changes in V3:
> - use new formulas (sep 30) suggested by Doug
> Changes in V4:
> - fix some wrong style
> - WARN_ONCE if min_low_div > max_low_div
> Changes in V5:
> - round up for i2c_rate and round down for scl_rate, suggested by Max
> - place a WARN_ON if scl_rate < 1000, suggested by Max
> - add div_high and div_low overflow protection, suggested by Max
>
> drivers/i2c/busses/i2c-rk3x.c | 161
> +++++++++++++++++++++++++++++++++++++++--- 1 file changed, 152
> insertions(+), 9 deletions(-)
>
> diff --git a/drivers/i2c/busses/i2c-rk3x.c b/drivers/i2c/busses/i2c-rk3x.c
> index b41d979..a30a4fb 100644
> --- a/drivers/i2c/busses/i2c-rk3x.c
> +++ b/drivers/i2c/busses/i2c-rk3x.c
> @@ -24,6 +24,7 @@
> #include <linux/wait.h>
> #include <linux/mfd/syscon.h>
> #include <linux/regmap.h>
> +#include <linux/math64.h>
>
>
> /* Register Map */
> @@ -428,18 +429,158 @@ out:
> return IRQ_HANDLED;
> }
>
> -static void rk3x_i2c_set_scl_rate(struct rk3x_i2c *i2c, unsigned long
> scl_rate) +static int rk3x_i2c_calc_divs(unsigned long i2c_rate, unsigned
> long scl_rate, + unsigned long *div_low, unsigned long
*div_high)
> {
> - unsigned long i2c_rate = clk_get_rate(i2c->clk);
> - unsigned int div;
> + unsigned long min_low_ns, min_high_ns;
> + unsigned long max_data_hold_ns;
> + unsigned long data_hold_buffer_ns;
> + unsigned long max_low_ns, min_total_ns;
> +
> + unsigned long i2c_rate_khz, scl_rate_khz;
> +
> + unsigned long min_low_div, min_high_div;
> + unsigned long max_low_div;
> +
> + unsigned long min_div_for_hold, min_total_div;
> + unsigned long extra_div, extra_low_div, ideal_low_div;
> +
> + /* Only support standard-mode and fast-mode */
> + if (WARN_ON(scl_rate > 400000))
> + scl_rate = 400000;
> +
> + /* prevent scl_rate_khz from becoming 0 */
> + if (WARN_ON(scl_rate < 1000))
> + scl_rate = 1000;
> +
> + /*
> + * min_low_ns: The minimum number of ns we need to hold low
> + * to meet i2c spec
> + * min_high_ns: The minimum number of ns we need to hold high
> + * to meet i2c spec
> + * max_low_ns: The maximum number of ns we can hold low
> + * to meet i2c spec
> + *
> + * Note: max_low_ns should be (max data hold time * 2 - buffer)
> + * This is because the i2c host on Rockchip holds the data line
> + * for half the low time.
> + */
> + if (scl_rate <= 100000) {
> + min_low_ns = 4700;
> + min_high_ns = 4000;
> + max_data_hold_ns = 3450;
> + data_hold_buffer_ns = 50;
> + } else {
> + min_low_ns = 1300;
> + min_high_ns = 600;
> + max_data_hold_ns = 900;
> + data_hold_buffer_ns = 50;
> + }
> + max_low_ns = max_data_hold_ns * 2 - data_hold_buffer_ns;
> + min_total_ns = min_low_ns + min_high_ns;
> +
> + /* Adjust to avoid overflow */
> + i2c_rate_khz = DIV_ROUND_UP(i2c_rate, 1000);
> + scl_rate_khz = scl_rate / 1000;
>
> - /* set DIV = DIVH = DIVL
> - * SCL rate = (clk rate) / (8 * (DIVH + 1 + DIVL + 1))
> - * = (clk rate) / (16 * (DIV + 1))
> + /*
> + * We need the total div to be >= this number
> + * so we don't clock too fast.
> + */
> + min_total_div = DIV_ROUND_UP(i2c_rate_khz, scl_rate_khz * 8);
> +
> + /* These are the min dividers needed for min hold times. */
> + min_low_div = DIV_ROUND_UP(i2c_rate_khz * min_low_ns, 8 * 1000000);
> + min_high_div = DIV_ROUND_UP(i2c_rate_khz * min_high_ns, 8 * 1000000);
> + min_div_for_hold = (min_low_div + min_high_div);
> +
> + /*
> + * This is the maximum divider so we don't go over the max.
> + * We don't round up here (we round down) since this is a max.
> */
> - div = DIV_ROUND_UP(i2c_rate, scl_rate * 16) - 1;
> + max_low_div = i2c_rate_khz * max_low_ns / (8 * 1000000);
> +
> + if (min_low_div > max_low_div) {
> + WARN_ONCE(true,
> + "Conflicting, min_low_div %lu, max_low_div %lu\n",
> + min_low_div, max_low_div);
> + max_low_div = min_low_div;
> + }
> +
> + if (min_div_for_hold > min_total_div) {
> + /*
> + * Time needed to meet hold requirements is important.
> + * Just use that.
> + */
> + *div_low = min_low_div;
> + *div_high = min_high_div;
> + } else {
> + /*
> + * We've got to distribute some time among the low and high
> + * so we don't run too fast.
> + */
> + extra_div = min_total_div - min_div_for_hold;
> +
> + /*
> + * We'll try to split things up perfectly evenly,
> + * biasing slightly towards having a higher div
> + * for low (spend more time low).
> + */
> + ideal_low_div = DIV_ROUND_UP(i2c_rate_khz * min_low_ns,
> + scl_rate_khz * 8 * min_total_ns);
> +
> + /* Don't allow it to go over the max */
> + if (ideal_low_div > max_low_div)
> + ideal_low_div = max_low_div;
> +
> + /*
> + * Handle when the ideal low div is going to take up
> + * more than we have.
> + */
> + if (ideal_low_div > min_low_div + extra_div)
> + ideal_low_div = min_low_div + extra_div;
> +
> + /* Give low the "ideal" and give high whatever extra is left */
> + extra_low_div = ideal_low_div - min_low_div;
> + *div_low = ideal_low_div;
> + *div_high = min_high_div + (extra_div - extra_low_div);
> + }
> +
> + /*
> + * Adjust to the fact that the hardware has an implicit "+1".
> + * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
> + */
> + *div_low = *div_low - 1;
> + *div_high = *div_high - 1;
> +
> + if (*div_low >= 0xffff || *div_high >= 0xffff)
> + return -EINVAL;
> + else
> + return 0;
> +}
> +
> +static int rk3x_i2c_set_scl_rate(struct rk3x_i2c *i2c, unsigned long
> scl_rate) +{
> + unsigned long i2c_rate = clk_get_rate(i2c->clk);
> + unsigned long div_low, div_high;
> + u64 t_low_ns, t_high_ns;
> + int ret = 0;
>
> - i2c_writel(i2c, (div << 16) | (div & 0xffff), REG_CLKDIV);
> + ret = rk3x_i2c_calc_divs(i2c_rate, scl_rate, &div_low, &div_high);
> + if (ret < 0)
> + return ret;
> +
> + i2c_writel(i2c, (div_high << 16) | (div_low & 0xffff), REG_CLKDIV);
> +
> + t_low_ns = div_u64(((u64)div_low + 1) * 8 * 1000000000, i2c_rate);
> + t_high_ns = div_u64(((u64)div_high + 1) * 8 * 1000000000, i2c_rate);
> + dev_dbg(i2c->dev,
> + "CLK %lukhz, Req %luns, Act low %lluns high %lluns\n",
> + i2c_rate / 1000,
> + 1000000000 / scl_rate,
> + t_low_ns, t_high_ns);
> +
> + return ret;
> }
>
> /**
> @@ -537,7 +678,9 @@ static int rk3x_i2c_xfer(struct i2c_adapter *adap,
> clk_enable(i2c->clk);
>
> /* The clock rate might have changed, so setup the divider again */
> - rk3x_i2c_set_scl_rate(i2c, i2c->scl_frequency);
> + ret = rk3x_i2c_set_scl_rate(i2c, i2c->scl_frequency);
> + if (ret < 0)
> + return ret;

You are leaving the i2c->lock locked and the clock enabled if you return here.
Please use goto to jump to the clk_disable(i2c->clk) at the end of the
function.

Cheers,
Max


\
 
 \ /
  Last update: 2014-10-13 11:21    [W:1.504 / U:0.224 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site