lkml.org 
[lkml]   [2012]   [Sep]   [19]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
Date
From
SubjectRe: Davicom DM9000C driver
Hi Allen,

[CCing netdev, keeping .c/.h source attached]

On Wed, 19 September 2012 Allen Huang (黃偉格) <allen_huang@davicom.com.tw> wrote:
> I'm Allen Huang from Davicom. We are hereby opensourcing the linux
> driver for our DM9000C.

Ah, from looking at the code DM9000C looks like it is some nerwork chip,
what platforms does it show up on?

> We would appreciate any comments that you have on our driver and
> whether it is ready to go into the kernel. Please see DM9000C driver in the
> attachment.

It would be nice if you could include the changes to Kconfig/Makefile
including a description as it's not clear on what kind of devices the
chip can be encountered.

Also please properly tag the source files attachments as text/plain.


With a quick glance at the code:
- your comments are often single-line C++ style //
and should be changed to /* */.

- comments that look like author/revision tags

- there are blocks of code commented or inside if (1) {}

- some printk calls missing KERN_ severity tag

- indentation issues


Please fix above issues (and have a look at scripts/checkpatch.pl) and
respin (as a patch) taking care to CC netdev so network people have to
chance to see it.

Bruno
/*
* Davicom DM9000 Fast Ethernet driver for Linux.
* Copyright (C) 1997 Sten Wang
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
*
* Additional updates, Copyright:
* Ben Dooks <ben@simtec.co.uk>
* Sascha Hauer <s.hauer@pengutronix.de>
*
* 2010.07.20 V_R1 1.Write PHY Reg27 = 0xE100
* 2.Just enable PHY once after GPIO setting in dm9000_init_dm9000()
* 3.Remove power down PHY in dm9000_shutdown()
* 2010.07.20 V_R2 1.Delay 20ms after PHY power on
* 2.Reset PHY after PHY power on in dm9000_init_dm9000()
* 2012.06.05 KT2.6.31_R2 1. Add the solution to fix the power-on FIFO data bytes shift issue! (Wr NCR 0x03)
*/

#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/version.h>
#include <linux/spinlock.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/dm9000.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/irq.h>

#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/io.h>

#include "dm9000.h"

/* Board/System/Debug information/definition ---------------- */

#define DM9000_PHY 0x40 /* PHY address 0x01 */

#define CARDNAME "dm9000"
#define DRV_VERSION "2.6.31"

/*
* Transmit timeout, default 5 seconds.
*/
static int watchdog = 5000;
module_param(watchdog, int, 0400);
MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");

/* DM9000 register address locking.
*
* The DM9000 uses an address register to control where data written
* to the data register goes. This means that the address register
* must be preserved over interrupts or similar calls.
*
* During interrupt and other critical calls, a spinlock is used to
* protect the system, but the calls themselves save the address
* in the address register in case they are interrupting another
* access to the device.
*
* For general accesses a lock is provided so that calls which are
* allowed to sleep are serialised so that the address register does
* not need to be saved. This lock also serves to serialise access
* to the EEPROM and PHY access registers which are shared between
* these two devices.
*/

/* The driver supports the original DM9000E, and now the two newer
* devices, DM9000A and DM9000B.
*/

enum dm9000_type {
TYPE_DM9000E, /* original DM9000 */
TYPE_DM9000A,
TYPE_DM9000B
};

/* Structure/enum declaration ------------------------------- */
typedef struct board_info {

void __iomem *io_addr; /* Register I/O base address */
void __iomem *io_data; /* Data I/O address */
u16 irq; /* IRQ */

u16 tx_pkt_cnt;
u16 queue_pkt_len;
u16 queue_start_addr;
u16 dbug_cnt;
u8 io_mode; /* 0:word, 2:byte */
u8 phy_addr;
u8 imr_all;

unsigned int flags;
unsigned int in_suspend :1;
int debug_level;

enum dm9000_type type;

void (*inblk)(void __iomem *port, void *data, int length);
void (*outblk)(void __iomem *port, void *data, int length);
void (*dumpblk)(void __iomem *port, int length);

struct device *dev; /* parent device */

struct resource *addr_res; /* resources found */
struct resource *data_res;
struct resource *addr_req; /* resources requested */
struct resource *data_req;
struct resource *irq_res;

struct mutex addr_lock; /* phy and eeprom access lock */

struct delayed_work phy_poll;
struct net_device *ndev;

spinlock_t lock;

struct mii_if_info mii;
u32 msg_enable;
} board_info_t;

static void
dm9000_phy_write(struct net_device *dev,
int phyaddr_unused, int reg, int value);

/* debug code */

#define dm9000_dbg(db, lev, msg...) do { \
if ((lev) < CONFIG_DM9000_DEBUGLEVEL && \
(lev) < db->debug_level) { \
dev_dbg(db->dev, msg); \
} \
} while (0)

static inline board_info_t *to_dm9000_board(struct net_device *dev)
{
return netdev_priv(dev);
}

/* DM9000 network board routine ---------------------------- */

static void
dm9000_reset(board_info_t * db)
{
dev_dbg(db->dev, "resetting device\n");

/* RESET device */
writeb(DM9000_NCR, db->io_addr);
udelay(200);
writeb(NCR_RST, db->io_data);
udelay(200);
}

/*
* Read a byte from I/O port
*/
static u8
ior(board_info_t * db, int reg)
{
writeb(reg, db->io_addr);
return readb(db->io_data);
}

/*
* Write a byte to I/O port
*/

static void
iow(board_info_t * db, int reg, int value)
{
writeb(reg, db->io_addr);
writeb(value, db->io_data);
}

/* routines for sending block to chip */

static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
{
writesb(reg, data, count);
}

static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
{
writesw(reg, data, (count+1) >> 1);
}

static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
{
writesl(reg, data, (count+3) >> 2);
}

/* input block from chip to memory */

static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
{
readsb(reg, data, count);
}


static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
{
readsw(reg, data, (count+1) >> 1);
}

static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
{
readsl(reg, data, (count+3) >> 2);
}

/* dump block from chip to null */

static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
{
int i;
int tmp;

for (i = 0; i < count; i++)
tmp = readb(reg);
}

static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
{
int i;
int tmp;

count = (count + 1) >> 1;

for (i = 0; i < count; i++)
tmp = readw(reg);
}

static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
{
int i;
int tmp;

count = (count + 3) >> 2;

for (i = 0; i < count; i++)
tmp = readl(reg);
}

/* dm9000_set_io
*
* select the specified set of io routines to use with the
* device
*/

static void dm9000_set_io(struct board_info *db, int byte_width)
{
/* use the size of the data resource to work out what IO
* routines we want to use
*/

switch (byte_width) {
case 1:
db->dumpblk = dm9000_dumpblk_8bit;
db->outblk = dm9000_outblk_8bit;
db->inblk = dm9000_inblk_8bit;
break;


case 3:
dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
case 2:
db->dumpblk = dm9000_dumpblk_16bit;
db->outblk = dm9000_outblk_16bit;
db->inblk = dm9000_inblk_16bit;
break;

case 4:
default:
db->dumpblk = dm9000_dumpblk_32bit;
db->outblk = dm9000_outblk_32bit;
db->inblk = dm9000_inblk_32bit;
break;
}
}

static void dm9000_schedule_poll(board_info_t *db)
{
if (db->type == TYPE_DM9000E)
schedule_delayed_work(&db->phy_poll, HZ * 2);
}

static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
board_info_t *dm = to_dm9000_board(dev);

if (!netif_running(dev))
return -EINVAL;

return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
}

static unsigned int
dm9000_read_locked(board_info_t *db, int reg)
{
unsigned long flags;
unsigned int ret;

spin_lock_irqsave(&db->lock, flags);
ret = ior(db, reg);
spin_unlock_irqrestore(&db->lock, flags);

return ret;
}

static int dm9000_wait_eeprom(board_info_t *db)
{
unsigned int status;
int timeout = 8; /* wait max 8msec */

/* The DM9000 data sheets say we should be able to
* poll the ERRE bit in EPCR to wait for the EEPROM
* operation. From testing several chips, this bit
* does not seem to work.
*
* We attempt to use the bit, but fall back to the
* timeout (which is why we do not return an error
* on expiry) to say that the EEPROM operation has
* completed.
*/

while (1) {
status = dm9000_read_locked(db, DM9000_EPCR);

if ((status & EPCR_ERRE) == 0)
break;

msleep(1);

if (timeout-- < 0) {
dev_dbg(db->dev, "timeout waiting EEPROM\n");
break;
}
}

return 0;
}

/*
* Read a word data from EEPROM
*/
static void
dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
{
unsigned long flags;

if (db->flags & DM9000_PLATF_NO_EEPROM) {
to[0] = 0xff;
to[1] = 0xff;
return;
}

mutex_lock(&db->addr_lock);

spin_lock_irqsave(&db->lock, flags);

iow(db, DM9000_EPAR, offset);
iow(db, DM9000_EPCR, EPCR_ERPRR);

spin_unlock_irqrestore(&db->lock, flags);

dm9000_wait_eeprom(db);

/* delay for at-least 150uS */
msleep(1);

spin_lock_irqsave(&db->lock, flags);

iow(db, DM9000_EPCR, 0x0);

to[0] = ior(db, DM9000_EPDRL);
to[1] = ior(db, DM9000_EPDRH);

spin_unlock_irqrestore(&db->lock, flags);

mutex_unlock(&db->addr_lock);
}

/*
* Write a word data to SROM
*/
static void
dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
{
unsigned long flags;

if (db->flags & DM9000_PLATF_NO_EEPROM)
return;

mutex_lock(&db->addr_lock);

spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPAR, offset);
iow(db, DM9000_EPDRH, data[1]);
iow(db, DM9000_EPDRL, data[0]);
iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
spin_unlock_irqrestore(&db->lock, flags);

dm9000_wait_eeprom(db);

mdelay(1); /* wait at least 150uS to clear */

spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPCR, 0);
spin_unlock_irqrestore(&db->lock, flags);

mutex_unlock(&db->addr_lock);
}

/* ethtool ops */

static void dm9000_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
board_info_t *dm = to_dm9000_board(dev);

strcpy(info->driver, CARDNAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, to_platform_device(dm->dev)->name);
}

static u32 dm9000_get_msglevel(struct net_device *dev)
{
board_info_t *dm = to_dm9000_board(dev);

return dm->msg_enable;
}

static void dm9000_set_msglevel(struct net_device *dev, u32 value)
{
board_info_t *dm = to_dm9000_board(dev);

dm->msg_enable = value;
}

static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
board_info_t *dm = to_dm9000_board(dev);

mii_ethtool_gset(&dm->mii, cmd);
return 0;
}

static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
board_info_t *dm = to_dm9000_board(dev);

return mii_ethtool_sset(&dm->mii, cmd);
}

static int dm9000_nway_reset(struct net_device *dev)
{
board_info_t *dm = to_dm9000_board(dev);
return mii_nway_restart(&dm->mii);
}

static u32 dm9000_get_link(struct net_device *dev)
{
board_info_t *dm = to_dm9000_board(dev);
u32 ret;

if (dm->flags & DM9000_PLATF_EXT_PHY)
ret = mii_link_ok(&dm->mii);
else
ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;

return ret;
}

#define DM_EEPROM_MAGIC (0x444D394B)

static int dm9000_get_eeprom_len(struct net_device *dev)
{
return 128;
}

static int dm9000_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *ee, u8 *data)
{
board_info_t *dm = to_dm9000_board(dev);
int offset = ee->offset;
int len = ee->len;
int i;

/* EEPROM access is aligned to two bytes */

if ((len & 1) != 0 || (offset & 1) != 0)
return -EINVAL;

if (dm->flags & DM9000_PLATF_NO_EEPROM)
return -ENOENT;

ee->magic = DM_EEPROM_MAGIC;

for (i = 0; i < len; i += 2)
dm9000_read_eeprom(dm, (offset + i) / 2, data + i);

return 0;
}

static int dm9000_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *ee, u8 *data)
{
board_info_t *dm = to_dm9000_board(dev);
int offset = ee->offset;
int len = ee->len;
int i;

/* EEPROM access is aligned to two bytes */

if ((len & 1) != 0 || (offset & 1) != 0)
return -EINVAL;

if (dm->flags & DM9000_PLATF_NO_EEPROM)
return -ENOENT;

if (ee->magic != DM_EEPROM_MAGIC)
return -EINVAL;

for (i = 0; i < len; i += 2)
dm9000_write_eeprom(dm, (offset + i) / 2, data + i);

return 0;
}

static const struct ethtool_ops dm9000_ethtool_ops = {
.get_drvinfo = dm9000_get_drvinfo,
.get_settings = dm9000_get_settings,
.set_settings = dm9000_set_settings,
.get_msglevel = dm9000_get_msglevel,
.set_msglevel = dm9000_set_msglevel,
.nway_reset = dm9000_nway_reset,
.get_link = dm9000_get_link,
.get_eeprom_len = dm9000_get_eeprom_len,
.get_eeprom = dm9000_get_eeprom,
.set_eeprom = dm9000_set_eeprom,
};

static void dm9000_show_carrier(board_info_t *db,
unsigned carrier, unsigned nsr)
{
struct net_device *ndev = db->ndev;
unsigned ncr = dm9000_read_locked(db, DM9000_NCR);

if (carrier)
dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
(ncr & NCR_FDX) ? "full" : "half");
else
dev_info(db->dev, "%s: link down\n", ndev->name);
}


static unsigned char dm9000_type_to_char(enum dm9000_type type)
{
switch (type) {
case TYPE_DM9000E: return 'e';
case TYPE_DM9000A: return 'a';
case TYPE_DM9000B: return 'b';
}

return '?';
}

static void
dm9000_poll_work(struct work_struct *w)
{
struct delayed_work *dw = container_of(w, struct delayed_work, work);
board_info_t *db = container_of(dw, board_info_t, phy_poll);
struct net_device *ndev = db->ndev;

//JJ2
// if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
// !(db->flags & DM9000_PLATF_EXT_PHY)) {
// =
if(1){
unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
unsigned new_carrier;

new_carrier = (nsr & NSR_LINKST) ? 1 : 0;

if (old_carrier != new_carrier) {

if (new_carrier)
printk(KERN_INFO "[dm9000%c %s Ethernet Driver, V%s]: Link-Up!!\n",dm9000_type_to_char(db->type), CARDNAME, DRV_VERSION); //JJ2
else
printk(KERN_INFO "[%s Ethernet Driver, V%s]: Link-Down!!\n", CARDNAME, DRV_VERSION); //JJ2

if (netif_msg_link(db))
dm9000_show_carrier(db, new_carrier, nsr);

if (!new_carrier)
netif_carrier_off(ndev);
else
netif_carrier_on(ndev);
}
} else
mii_check_media(&db->mii, netif_msg_link(db), 0);

if (netif_running(ndev))
dm9000_schedule_poll(db);
}

/* dm9000_release_board
*
* release a board, and any mapped resources
*/

static void
dm9000_release_board(struct platform_device *pdev, struct board_info *db)
{
/* unmap our resources */

iounmap(db->io_addr);
iounmap(db->io_data);

/* release the resources */

release_resource(db->data_req);
kfree(db->data_req);

release_resource(db->addr_req);
kfree(db->addr_req);
}



/*
* Set DM9000 multicast address
*/
static void
dm9000_hash_table(struct net_device *dev)
{
board_info_t *db = netdev_priv(dev);
struct dev_mc_list *mcptr = dev->mc_list;
int mc_cnt = dev->mc_count;
int i, oft;
u32 hash_val;
u16 hash_table[4];
u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
unsigned long flags;

dm9000_dbg(db, 1, "entering %s\n", __func__);

spin_lock_irqsave(&db->lock, flags);

for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
iow(db, oft, dev->dev_addr[i]);

/* Clear Hash Table */
for (i = 0; i < 4; i++)
hash_table[i] = 0x0;

/* broadcast address */
hash_table[3] = 0x8000;

if (dev->flags & IFF_PROMISC)
rcr |= RCR_PRMSC;

if (dev->flags & IFF_ALLMULTI)
rcr |= RCR_ALL;

/* the multicast address in Hash Table : 64 bits */
for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
hash_val = ether_crc_le(6, mcptr->dmi_addr) & 0x3f;
hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
}

/* Write the hash table to MAC MD table */
for (i = 0, oft = DM9000_MAR; i < 4; i++) {
iow(db, oft++, hash_table[i]);
iow(db, oft++, hash_table[i] >> 8);
}

iow(db, DM9000_RCR, rcr);
spin_unlock_irqrestore(&db->lock, flags);
}

/*
* Initilize dm9000 board
*/
static void
dm9000_init_dm9000(struct net_device *dev)
{
board_info_t *db = netdev_priv(dev);
unsigned int imr;

dm9000_dbg(db, 1, "entering %s\n", __func__);

/* I/O mode */
db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */

/* GPIO0 on pre-activate PHY */
//V_R1 iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
iow(db, DM9000_GPR, 0); /* Enable PHY */
mdelay(20); //V_R2

dm9000_phy_write(dev, 0, 0, 0x8000); //V_R2 reset PHY
mdelay (20);


// if (db->flags & DM9000_PLATF_EXT_PHY)
// iow(db, DM9000_NCR, NCR_EXT_PHY);

/* Program operating register */
iow(db, DM9000_TCR, 0); /* TX Polling clear */
iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
iow(db, DM9000_FCR, 0xff); /* Flow Control */
iow(db, DM9000_SMCR, 0); /* Special Mode */
/* clear TX status */
iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */

/* Set address filter table */
dm9000_hash_table(dev);

imr = IMR_PAR | IMR_PTM | IMR_PRM;
if (db->type != TYPE_DM9000E)
imr |= IMR_LNKCHNG;

db->imr_all = imr;

/* Enable TX/RX interrupt mask */
iow(db, DM9000_IMR, imr);

/* Init Driver variable */
db->tx_pkt_cnt = 0;
db->queue_pkt_len = 0;
dev->trans_start = 0;

dm9000_phy_write(dev, 0, 27, 0xE100); //V_R1
}

/* Our watchdog timed out. Called by the networking layer */
static void dm9000_timeout(struct net_device *dev)
{
board_info_t *db = netdev_priv(dev);
u8 reg_save;
unsigned long flags;

/* Save previous register address */
reg_save = readb(db->io_addr);
spin_lock_irqsave(&db->lock, flags);

netif_stop_queue(dev);
printk(KERN_INFO "[%s Ethernet Driver, V%s]: Timeout!!\n", CARDNAME, DRV_VERSION); //JJ1
dm9000_reset(db);
dm9000_init_dm9000(dev);
/* We can accept TX packets again */
dev->trans_start = jiffies;
netif_wake_queue(dev);

/* Restore previous register address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock, flags);
}

/*
* Hardware start transmission.
* Send a packet to media from the upper layer.
*/
static int
dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned long flags;
board_info_t *db = netdev_priv(dev);

dm9000_dbg(db, 3, "%s:\n", __func__);

if (db->tx_pkt_cnt > 1)
return 1;

spin_lock_irqsave(&db->lock, flags);

/* Move data to DM9000 TX RAM */
writeb(DM9000_MWCMD, db->io_addr);

(db->outblk)(db->io_data, skb->data, skb->len);
dev->stats.tx_bytes += skb->len;

db->tx_pkt_cnt++;
/* TX control: First packet immediately send, second packet queue */
if (db->tx_pkt_cnt == 1) {
/* Set TX length to DM9000 */
iow(db, DM9000_TXPLL, skb->len);
iow(db, DM9000_TXPLH, skb->len >> 8);

/* Issue TX polling command */
iow(db, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */

dev->trans_start = jiffies; /* save the time stamp */
} else {
/* Second packet */
db->queue_pkt_len = skb->len;
netif_stop_queue(dev);
}

spin_unlock_irqrestore(&db->lock, flags);

/* free this SKB */
dev_kfree_skb(skb);

return 0;
}

/*
* DM9000 interrupt handler
* receive the packet to upper layer, free the transmitted packet
*/

static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
{
int tx_status = ior(db, DM9000_NSR); /* Got TX status */

if (tx_status & (NSR_TX2END | NSR_TX1END)) {
/* One packet sent complete */
db->tx_pkt_cnt--;
dev->stats.tx_packets++;

if (netif_msg_tx_done(db))
dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);

/* Queue packet check & send */
if (db->tx_pkt_cnt > 0) {
iow(db, DM9000_TXPLL, db->queue_pkt_len);
iow(db, DM9000_TXPLH, db->queue_pkt_len >> 8);
iow(db, DM9000_TCR, TCR_TXREQ);
dev->trans_start = jiffies;
}
netif_wake_queue(dev);
}
}

struct dm9000_rxhdr {
u8 RxPktReady;
u8 RxStatus;
__le16 RxLen;
} __attribute__((__packed__));

/*
* Received a packet and pass to upper layer
*/
static void
dm9000_rx(struct net_device *dev)
{
board_info_t *db = netdev_priv(dev);
struct dm9000_rxhdr rxhdr;
struct sk_buff *skb;
u8 rxbyte, *rdptr;
bool GoodPacket;
int RxLen;

/* Check packet ready or not */
do {
ior(db, DM9000_MRCMDX); /* Dummy read */

/* Get most updated data */
rxbyte = readb(db->io_data);

/* Status check: this byte must be 0 or 1 */
if (rxbyte > DM9000_PKT_RDY) {
dev_warn(db->dev, "status check fail: %d\n", rxbyte);
iow(db, DM9000_RCR, 0x00); /* Stop Device */
iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
return;
}

if (rxbyte != DM9000_PKT_RDY)
return;

/* A packet ready now & Get status/length */
GoodPacket = true;
writeb(DM9000_MRCMD, db->io_addr);

(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));

RxLen = le16_to_cpu(rxhdr.RxLen);

if (netif_msg_rx_status(db))
dev_dbg(db->dev, "RX: status %02x, length %04x\n",
rxhdr.RxStatus, RxLen);

/* Packet Status check */
if (RxLen < 0x40) {
GoodPacket = false;
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
}

if (RxLen > DM9000_PKT_MAX) {
dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
}

/* rxhdr.RxStatus is identical to RSR register. */
if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
RSR_PLE | RSR_RWTO |
RSR_LCS | RSR_RF)) {
GoodPacket = false;
if (rxhdr.RxStatus & RSR_FOE) {
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "fifo error\n");
dev->stats.rx_fifo_errors++;
printk(KERN_INFO "[%s Ethernet Driver, V%s]: FIFO Over Flow!!\n", CARDNAME, DRV_VERSION); //JJ1
}
if (rxhdr.RxStatus & RSR_CE) {
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "crc error\n");
dev->stats.rx_crc_errors++;
}
if (rxhdr.RxStatus & RSR_RF) {
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "length error\n");
dev->stats.rx_length_errors++;
}
}

/* Move data from DM9000 */
if (GoodPacket
&& ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
skb_reserve(skb, 2);
rdptr = (u8 *) skb_put(skb, RxLen - 4);

/* Read received packet from RX SRAM */

(db->inblk)(db->io_data, rdptr, RxLen);
dev->stats.rx_bytes += RxLen;

/* Pass to upper layer */
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->stats.rx_packets++;

} else {
/* need to dump the packet's data */

(db->dumpblk)(db->io_data, RxLen);
}
} while (rxbyte == DM9000_PKT_RDY);
}

static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
board_info_t *db = netdev_priv(dev);
int int_status;
unsigned long flags;
u8 reg_save;

dm9000_dbg(db, 3, "entering %s\n", __func__);

/* A real interrupt coming */

/* holders of db->lock must always block IRQs */
spin_lock_irqsave(&db->lock, flags);

/* Save previous register address */
reg_save = readb(db->io_addr);

/* Disable all interrupts */
iow(db, DM9000_IMR, IMR_PAR);

/* Got DM9000 interrupt status */
int_status = ior(db, DM9000_ISR); /* Got ISR */
iow(db, DM9000_ISR, int_status); /* Clear ISR status */

if (netif_msg_intr(db))
dev_dbg(db->dev, "interrupt status %02x\n", int_status);

/* Received the coming packet */
if (int_status & ISR_PRS)
dm9000_rx(dev);

/* Trnasmit Interrupt check */
if (int_status & ISR_PTS)
dm9000_tx_done(dev, db);

if (db->type != TYPE_DM9000E) {
if (int_status & ISR_LNKCHNG) {
/* fire a link-change request */
schedule_delayed_work(&db->phy_poll, 1);
}
}

/* Re-enable interrupt mask */
iow(db, DM9000_IMR, db->imr_all);

/* Restore previous register address */
writeb(reg_save, db->io_addr);

spin_unlock_irqrestore(&db->lock, flags);

return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
*Used by netconsole
*/
static void dm9000_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
dm9000_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif

/*
* Open the interface.
* The interface is opened whenever "ifconfig" actives it.
*/
static int
dm9000_open(struct net_device *dev)
{
board_info_t *db = netdev_priv(dev);
unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;

if (netif_msg_ifup(db))
dev_dbg(db->dev, "enabling %s\n", dev->name);

/* If there is no IRQ type specified, default to something that
* may work, and tell the user that this is a problem */

if (irqflags == IRQF_TRIGGER_NONE)
dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");

irqflags |= IRQF_SHARED;

if (request_irq(dev->irq, &dm9000_interrupt, irqflags, dev->name, dev))
return -EAGAIN;

/* Initialize DM9000 board */
dm9000_reset(db);
dm9000_init_dm9000(dev);

/* Init driver variable */
db->dbug_cnt = 0;

mii_check_media(&db->mii, netif_msg_link(db), 1);
netif_start_queue(dev);

dm9000_schedule_poll(db);

return 0;
}

/*
* Sleep, either by using msleep() or if we are suspending, then
* use mdelay() to sleep.
*/
static void dm9000_msleep(board_info_t *db, unsigned int ms)
{
if (db->in_suspend)
mdelay(ms);
else
msleep(ms);
}

/*
* Read a word from phyxcer
*/
static int
dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
{
board_info_t *db = netdev_priv(dev);
unsigned long flags;
unsigned int reg_save;
int ret;

mutex_lock(&db->addr_lock);

spin_lock_irqsave(&db->lock,flags);

/* Save previous register address */
reg_save = readb(db->io_addr);

/* Fill the phyxcer register into REG_0C */
iow(db, DM9000_EPAR, DM9000_PHY | reg);

iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); /* Issue phyxcer read command */

writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock,flags);

dm9000_msleep(db, 1); /* Wait read complete */

spin_lock_irqsave(&db->lock,flags);
reg_save = readb(db->io_addr);

iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */

/* The read data keeps on REG_0D & REG_0E */
ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);

/* restore the previous address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock,flags);

mutex_unlock(&db->addr_lock);

dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
return ret;
}

/*
* Write a word to phyxcer
*/
static void
dm9000_phy_write(struct net_device *dev,
int phyaddr_unused, int reg, int value)
{
board_info_t *db = netdev_priv(dev);
unsigned long flags;
unsigned long reg_save;

dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
mutex_lock(&db->addr_lock);

spin_lock_irqsave(&db->lock,flags);

/* Save previous register address */
reg_save = readb(db->io_addr);

/* Fill the phyxcer register into REG_0C */
iow(db, DM9000_EPAR, DM9000_PHY | reg);

/* Fill the written data into REG_0D & REG_0E */
iow(db, DM9000_EPDRL, value);
iow(db, DM9000_EPDRH, value >> 8);

iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); /* Issue phyxcer write command */

writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock, flags);

dm9000_msleep(db, 1); /* Wait write complete */

spin_lock_irqsave(&db->lock,flags);
reg_save = readb(db->io_addr);

iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */

/* restore the previous address */
writeb(reg_save, db->io_addr);

spin_unlock_irqrestore(&db->lock, flags);
mutex_unlock(&db->addr_lock);
}

static void
dm9000_shutdown(struct net_device *dev)
{
board_info_t *db = netdev_priv(dev);

/* RESET device */
dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
//V_R1 iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */
iow(db, DM9000_RCR, 0x00); /* Disable RX */
}

/*
* Stop the interface.
* The interface is stopped when it is brought.
*/
static int
dm9000_stop(struct net_device *ndev)
{
board_info_t *db = netdev_priv(ndev);

if (netif_msg_ifdown(db))
dev_dbg(db->dev, "shutting down %s\n", ndev->name);

cancel_delayed_work_sync(&db->phy_poll);

netif_stop_queue(ndev);
netif_carrier_off(ndev);

/* free interrupt */
free_irq(ndev->irq, ndev);

dm9000_shutdown(ndev);

return 0;
}

#define res_size(_r) (((_r)->end - (_r)->start) + 1)

static const struct net_device_ops dm9000_netdev_ops = {
.ndo_open = dm9000_open,
.ndo_stop = dm9000_stop,
.ndo_start_xmit = dm9000_start_xmit,
.ndo_tx_timeout = dm9000_timeout,
.ndo_set_multicast_list = dm9000_hash_table,
.ndo_do_ioctl = dm9000_ioctl,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = dm9000_poll_controller,
#endif
};


/*
* Search DM9000 board, allocate space and register it
*/
static int __devinit
dm9000_probe(struct platform_device *pdev)
{
struct dm9000_plat_data *pdata = pdev->dev.platform_data;
struct board_info *db; /* Point a board information structure */
struct net_device *ndev;
const unsigned char *mac_src;
int ret = 0;
int iosize;
int i;
u32 id_val;

/* Init network device */
ndev = alloc_etherdev(sizeof(struct board_info));
if (!ndev) {
dev_err(&pdev->dev, "could not allocate device.\n");
return -ENOMEM;
}

SET_NETDEV_DEV(ndev, &pdev->dev);

dev_dbg(&pdev->dev, "dm9000_probe()\n");
ndev->netdev_ops = &dm9000_netdev_ops;
/* setup board info structure */
db = netdev_priv(ndev);
memset(db, 0, sizeof(*db));

db->dev = &pdev->dev;
db->ndev = ndev;

spin_lock_init(&db->lock);
mutex_init(&db->addr_lock);

INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);

db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);

if (db->addr_res == NULL || db->data_res == NULL ||
db->irq_res == NULL) {
dev_err(db->dev, "insufficient resources\n");
ret = -ENOENT;
goto out;
}

iosize = res_size(db->addr_res);
db->addr_req = request_mem_region(db->addr_res->start, iosize,
pdev->name);

if (db->addr_req == NULL) {
dev_err(db->dev, "cannot claim address reg area\n");
ret = -EIO;
goto out;
}

db->io_addr = ioremap(db->addr_res->start, iosize);

if (db->io_addr == NULL) {
dev_err(db->dev, "failed to ioremap address reg\n");
ret = -EINVAL;
goto out;
}

iosize = res_size(db->data_res);
db->data_req = request_mem_region(db->data_res->start, iosize,
pdev->name);

if (db->data_req == NULL) {
dev_err(db->dev, "cannot claim data reg area\n");
ret = -EIO;
goto out;
}

db->io_data = ioremap(db->data_res->start, iosize);

if (db->io_data == NULL) {
dev_err(db->dev, "failed to ioremap data reg\n");
ret = -EINVAL;
goto out;
}

/* fill in parameters for net-dev structure */
ndev->base_addr = (unsigned long)db->io_addr;
ndev->irq = db->irq_res->start;
//Stone add
printk("[dm9] %s ndev->irq=%x \n",__func__,ndev->irq);

/* ensure at least we have a default set of IO routines */
dm9000_set_io(db, iosize);

/* check to see if anything is being over-ridden */
if (pdata != NULL) {
/* check to see if the driver wants to over-ride the
* default IO width */

if (pdata->flags & DM9000_PLATF_8BITONLY)
dm9000_set_io(db, 1);

if (pdata->flags & DM9000_PLATF_16BITONLY)
dm9000_set_io(db, 2);

if (pdata->flags & DM9000_PLATF_32BITONLY)
dm9000_set_io(db, 4);

/* check to see if there are any IO routine
* over-rides */

if (pdata->inblk != NULL)
db->inblk = pdata->inblk;

if (pdata->outblk != NULL)
db->outblk = pdata->outblk;

if (pdata->dumpblk != NULL)
db->dumpblk = pdata->dumpblk;

db->flags = pdata->flags;
}

#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
db->flags |= DM9000_PLATF_SIMPLE_PHY;
#endif

//Stone add
// dm9000_reset(db);
iow(db, DM9000_NCR, 0x03);

/* try multiple times, DM9000 sometimes gets the read wrong */
for (i = 0; i < 8; i++) {
id_val = ior(db, DM9000_VIDL);
id_val |= (u32)ior(db, DM9000_VIDH) << 8;
id_val |= (u32)ior(db, DM9000_PIDL) << 16;
id_val |= (u32)ior(db, DM9000_PIDH) << 24;

printk("[dm9].%d read id 0x%08x\n", i+1, id_val);

if (id_val == DM9000_ID)
break;
dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
}

printk(KERN_INFO "[%s Ethernet Driver, V%s]: KV= %d.%d.%d !!\n", CARDNAME, DRV_VERSION, //JJ1
(LINUX_VERSION_CODE>>16 & 0xff),
(LINUX_VERSION_CODE>>8 & 0xff),
(LINUX_VERSION_CODE & 0xff) ); //#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))
printk(KERN_INFO "[%s Ethernet Driver, V%s]: ChipID= 0x%x !!\n", CARDNAME, DRV_VERSION, id_val ); // JJ1

if (id_val != DM9000_ID) {
dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
ret = -ENODEV;
goto out;
}

/* Identify what type of DM9000 we are working on */

id_val = ior(db, DM9000_CHIPR);
dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
printk(KERN_INFO "[DM9000]dm9000 revision 0x%02x\n", id_val); //V_R1

switch (id_val) {
case CHIPR_DM9000A:
db->type = TYPE_DM9000A;
break;
case CHIPR_DM9000B:
db->type = TYPE_DM9000B;
break;
default:
dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
db->type = TYPE_DM9000E;
}

/* from this point we assume that we have found a DM9000 */

/* driver system function */
ether_setup(ndev);

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,31)
ndev->netdev_ops = &dm9000_netdev_ops; // new kernel 2.6.31
ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
ndev->ethtool_ops = &dm9000_ethtool_ops;
#else
ndev->open = &dm9000_open;
ndev->hard_start_xmit = &dm9000_start_xmit;
ndev->tx_timeout = &dm9000_timeout;
ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
ndev->stop = &dm9000_stop;
ndev->set_multicast_list = &dm9000_hash_table;
ndev->ethtool_ops = &dm9000_ethtool_ops;
ndev->do_ioctl = &dm9000_ioctl;
#endif


#ifdef CONFIG_NET_POLL_CONTROLLER
ndev->poll_controller = &dm9000_poll_controller;
#endif

db->msg_enable = NETIF_MSG_LINK;
db->mii.phy_id_mask = 0x1f;
db->mii.reg_num_mask = 0x1f;
db->mii.force_media = 0;
db->mii.full_duplex = 0;
db->mii.dev = ndev;
db->mii.mdio_read = dm9000_phy_read;
db->mii.mdio_write = dm9000_phy_write;

mac_src = "eeprom";

/* try reading the node address from the attached EEPROM */
for (i = 0; i < 6; i += 2)
dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);

if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
mac_src = "platform data";
memcpy(ndev->dev_addr, pdata->dev_addr, 6);
}

if (!is_valid_ether_addr(ndev->dev_addr)) {
/* try reading from mac */

mac_src = "chip";

static unsigned char mac_addr[6] = {0x00,0x11,0x22,0x33,0x44,0x55};
static unsigned char mac_tmp[6] = {0xff,0xff,0xff,0xff,0xff,0xff};
for (i = 0; i < 6; i++)
ndev->dev_addr[i] = ior(db, i+DM9000_PAR);

// Mark Chang 20100521
// -------------------
if (!memcmp(ndev->dev_addr, mac_tmp, 6))
memcpy(ndev->dev_addr, mac_addr, 6);
}

if (!is_valid_ether_addr(ndev->dev_addr))
dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
"set using ifconfig\n", ndev->name);

platform_set_drvdata(pdev, ndev);
ret = register_netdev(ndev);

if (ret == 0)
printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
ndev->name, dm9000_type_to_char(db->type),
db->io_addr, db->io_data, ndev->irq,
ndev->dev_addr, mac_src);
return 0;

out:
dev_err(db->dev, "not found (%d).\n", ret);

dm9000_release_board(pdev, db);
free_netdev(ndev);

return ret;
}

static int
dm9000_drv_suspend(struct platform_device *dev, pm_message_t state)
{
struct net_device *ndev = platform_get_drvdata(dev);
board_info_t *db;

if (ndev) {
db = netdev_priv(ndev);
db->in_suspend = 1;

if (netif_running(ndev)) {
netif_device_detach(ndev);
dm9000_shutdown(ndev);
}
}
return 0;
}

static int
dm9000_drv_resume(struct platform_device *dev)
{
struct net_device *ndev = platform_get_drvdata(dev);
board_info_t *db = netdev_priv(ndev);

if (ndev) {

if (netif_running(ndev)) {
dm9000_reset(db);
dm9000_init_dm9000(ndev);

netif_device_attach(ndev);
}

db->in_suspend = 0;
}
return 0;
}

static int __devexit
dm9000_drv_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);

platform_set_drvdata(pdev, NULL);

unregister_netdev(ndev);
dm9000_release_board(pdev, (board_info_t *) netdev_priv(ndev));
free_netdev(ndev); /* free device structure */

dev_dbg(&pdev->dev, "released and freed device\n");
return 0;
}

static struct platform_driver dm9000_driver = {
.driver = {
.name = "dm9000",
.owner = THIS_MODULE,
},
.probe = dm9000_probe,
.remove = __devexit_p(dm9000_drv_remove),
.suspend = dm9000_drv_suspend,
.resume = dm9000_drv_resume,
};

static int __init
dm9000_init(void)
{
printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);

return platform_driver_register(&dm9000_driver);
}

static void __exit
dm9000_cleanup(void)
{
platform_driver_unregister(&dm9000_driver);
}

module_init(dm9000_init);
module_exit(dm9000_cleanup);

MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
MODULE_DESCRIPTION("Davicom DM9000 network driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:dm9000");
/*
* dm9000 Ethernet
*/

#ifndef _DM9000X_H_
#define _DM9000X_H_

#define DM9000_ID 0x90000A46

/* although the registers are 16 bit, they are 32-bit aligned.
*/

#define DM9000_NCR 0x00
#define DM9000_NSR 0x01
#define DM9000_TCR 0x02
#define DM9000_TSR1 0x03
#define DM9000_TSR2 0x04
#define DM9000_RCR 0x05
#define DM9000_RSR 0x06
#define DM9000_ROCR 0x07
#define DM9000_BPTR 0x08
#define DM9000_FCTR 0x09
#define DM9000_FCR 0x0A
#define DM9000_EPCR 0x0B
#define DM9000_EPAR 0x0C
#define DM9000_EPDRL 0x0D
#define DM9000_EPDRH 0x0E
#define DM9000_WCR 0x0F

#define DM9000_PAR 0x10
#define DM9000_MAR 0x16

#define DM9000_GPCR 0x1e
#define DM9000_GPR 0x1f
#define DM9000_TRPAL 0x22
#define DM9000_TRPAH 0x23
#define DM9000_RWPAL 0x24
#define DM9000_RWPAH 0x25

#define DM9000_VIDL 0x28
#define DM9000_VIDH 0x29
#define DM9000_PIDL 0x2A
#define DM9000_PIDH 0x2B

#define DM9000_CHIPR 0x2C
#define DM9000_SMCR 0x2F

#define CHIPR_DM9000A 0x19
#define CHIPR_DM9000B 0x1A //V_R1 0x1B

#define DM9000_MRCMDX 0xF0
#define DM9000_MRCMD 0xF2
#define DM9000_MRRL 0xF4
#define DM9000_MRRH 0xF5
#define DM9000_MWCMDX 0xF6
#define DM9000_MWCMD 0xF8
#define DM9000_MWRL 0xFA
#define DM9000_MWRH 0xFB
#define DM9000_TXPLL 0xFC
#define DM9000_TXPLH 0xFD
#define DM9000_ISR 0xFE
#define DM9000_IMR 0xFF

#define NCR_EXT_PHY (1<<7)
#define NCR_WAKEEN (1<<6)
#define NCR_FCOL (1<<4)
#define NCR_FDX (1<<3)
#define NCR_LBK (3<<1)
#define NCR_RST (1<<0)

#define NSR_SPEED (1<<7)
#define NSR_LINKST (1<<6)
#define NSR_WAKEST (1<<5)
#define NSR_TX2END (1<<3)
#define NSR_TX1END (1<<2)
#define NSR_RXOV (1<<1)

#define TCR_TJDIS (1<<6)
#define TCR_EXCECM (1<<5)
#define TCR_PAD_DIS2 (1<<4)
#define TCR_CRC_DIS2 (1<<3)
#define TCR_PAD_DIS1 (1<<2)
#define TCR_CRC_DIS1 (1<<1)
#define TCR_TXREQ (1<<0)

#define TSR_TJTO (1<<7)
#define TSR_LC (1<<6)
#define TSR_NC (1<<5)
#define TSR_LCOL (1<<4)
#define TSR_COL (1<<3)
#define TSR_EC (1<<2)

#define RCR_WTDIS (1<<6)
#define RCR_DIS_LONG (1<<5)
#define RCR_DIS_CRC (1<<4)
#define RCR_ALL (1<<3)
#define RCR_RUNT (1<<2)
#define RCR_PRMSC (1<<1)
#define RCR_RXEN (1<<0)

#define RSR_RF (1<<7)
#define RSR_MF (1<<6)
#define RSR_LCS (1<<5)
#define RSR_RWTO (1<<4)
#define RSR_PLE (1<<3)
#define RSR_AE (1<<2)
#define RSR_CE (1<<1)
#define RSR_FOE (1<<0)

#define FCTR_HWOT(ot) (( ot & 0xf ) << 4 )
#define FCTR_LWOT(ot) ( ot & 0xf )

#define IMR_PAR (1<<7)
#define IMR_ROOM (1<<3)
#define IMR_ROM (1<<2)
#define IMR_PTM (1<<1)
#define IMR_PRM (1<<0)

#define ISR_ROOS (1<<3)
#define ISR_ROS (1<<2)
#define ISR_PTS (1<<1)
#define ISR_PRS (1<<0)
#define ISR_CLR_STATUS (ISR_ROOS | ISR_ROS | ISR_PTS | ISR_PRS)

#define EPCR_REEP (1<<5)
#define EPCR_WEP (1<<4)
#define EPCR_EPOS (1<<3)
#define EPCR_ERPRR (1<<2)
#define EPCR_ERPRW (1<<1)
#define EPCR_ERRE (1<<0)

#define GPCR_GEP_CNTL (1<<0)

#define DM9000_PKT_RDY 0x01 /* Packet ready to receive */
#define DM9000_PKT_MAX 1536 /* Received packet max size */

/* DM9000A / DM9000B definitions */

#define IMR_LNKCHNG (1<<5)
#define IMR_UNDERRUN (1<<4)

#define ISR_LNKCHNG (1<<5)
#define ISR_UNDERRUN (1<<4)

#endif /* _DM9000X_H_ */

\
 
 \ /
  Last update: 2012-09-19 19:21    [W:0.163 / U:1.652 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site