lkml.org 
[lkml]   [2012]   [Oct]   [22]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
    Patch in this message
    /
    From
    Subject[PATCH 05/16 v2] f2fs: add checkpoint operations
    Date
    This adds functions required by the checkpoint operations.

    Basically, f2fs adopts a roll-back model with checkpoint blocks written in the
    CP area. The checkpoint procedure includes as follows.

    - write_checkpoint()
    1. block_operations() freezes VFS calls.
    2. submit cached bios.
    3. flush_nat_entries() writes NAT pages updated by dirty NAT entries.
    4. flush_sit_entries() writes SIT pages updated by dirty SIT entries.
    5. do_checkpoint() writes,
    - checkpoint block (#0)
    - orphan inode blocks
    - summary blocks made by active logs
    - checkpoint block (copy of #0)
    6. unblock_opeations()

    In order to provide an address space for meta pages, f2fs_sb_info has a special
    inode, namely meta_inode. This patch also adds the address space operations for
    meta_inode.

    Signed-off-by: Chul Lee <chur.lee@samsung.com>
    Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
    ---
    fs/f2fs/checkpoint.c | 795 ++++++++++++++++++++++++++++++++++++++++++++++++++
    1 file changed, 795 insertions(+)
    create mode 100644 fs/f2fs/checkpoint.c

    diff --git a/fs/f2fs/checkpoint.c b/fs/f2fs/checkpoint.c
    new file mode 100644
    index 0000000..a0601cc
    --- /dev/null
    +++ b/fs/f2fs/checkpoint.c
    @@ -0,0 +1,795 @@
    +/**
    + * fs/f2fs/checkpoint.c
    + *
    + * Copyright (c) 2012 Samsung Electronics Co., Ltd.
    + * http://www.samsung.com/
    + *
    + * This program is free software; you can redistribute it and/or modify
    + * it under the terms of the GNU General Public License version 2 as
    + * published by the Free Software Foundation.
    + */
    +#include <linux/fs.h>
    +#include <linux/bio.h>
    +#include <linux/mpage.h>
    +#include <linux/writeback.h>
    +#include <linux/blkdev.h>
    +#include <linux/f2fs_fs.h>
    +#include <linux/pagevec.h>
    +#include <linux/swap.h>
    +
    +#include "f2fs.h"
    +#include "node.h"
    +#include "segment.h"
    +
    +static struct kmem_cache *orphan_entry_slab;
    +static struct kmem_cache *inode_entry_slab;
    +
    +/**
    + * We guarantee no failure on the returned page.
    + */
    +struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
    +{
    + struct address_space *mapping = sbi->meta_inode->i_mapping;
    + struct page *page = NULL;
    +repeat:
    + page = grab_cache_page(mapping, index);
    + if (!page) {
    + cond_resched();
    + goto repeat;
    + }
    +
    + /* We wait writeback only inside grab_meta_page() */
    + wait_on_page_writeback(page);
    + SetPageUptodate(page);
    + return page;
    +}
    +
    +/**
    + * We guarantee no failure on the returned page.
    + */
    +struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
    +{
    + struct address_space *mapping = sbi->meta_inode->i_mapping;
    + struct page *page;
    +repeat:
    + page = grab_cache_page(mapping, index);
    + if (!page) {
    + cond_resched();
    + goto repeat;
    + }
    + if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
    + f2fs_put_page(page, 1);
    + goto repeat;
    + }
    + mark_page_accessed(page);
    +
    + /* We do not allow returning an errorneous page */
    + return page;
    +}
    +
    +static int f2fs_write_meta_page(struct page *page,
    + struct writeback_control *wbc)
    +{
    + struct inode *inode = page->mapping->host;
    + struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
    + int err;
    +
    + wait_on_page_writeback(page);
    +
    + err = write_meta_page(sbi, page, wbc);
    + if (err) {
    + wbc->pages_skipped++;
    + set_page_dirty(page);
    + }
    +
    + dec_page_count(sbi, F2FS_DIRTY_META);
    +
    + /* In this case, we should not unlock this page */
    + if (err != AOP_WRITEPAGE_ACTIVATE)
    + unlock_page(page);
    + return err;
    +}
    +
    +static int f2fs_write_meta_pages(struct address_space *mapping,
    + struct writeback_control *wbc)
    +{
    + struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
    + struct block_device *bdev = sbi->sb->s_bdev;
    + long written;
    +
    + if (wbc->for_kupdate)
    + return 0;
    +
    + if (get_pages(sbi, F2FS_DIRTY_META) == 0)
    + return 0;
    +
    + /* if mounting is failed, skip writing node pages */
    + mutex_lock(&sbi->cp_mutex);
    + written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
    + mutex_unlock(&sbi->cp_mutex);
    + wbc->nr_to_write -= written;
    + return 0;
    +}
    +
    +long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
    + long nr_to_write)
    +{
    + struct address_space *mapping = sbi->meta_inode->i_mapping;
    + pgoff_t index = 0, end = LONG_MAX;
    + struct pagevec pvec;
    + long nwritten = 0;
    + struct writeback_control wbc = {
    + .for_reclaim = 0,
    + };
    +
    + pagevec_init(&pvec, 0);
    +
    + while (index <= end) {
    + int i, nr_pages;
    + nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
    + PAGECACHE_TAG_DIRTY,
    + min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
    + if (nr_pages == 0)
    + break;
    +
    + for (i = 0; i < nr_pages; i++) {
    + struct page *page = pvec.pages[i];
    + lock_page(page);
    + BUG_ON(page->mapping != mapping);
    + BUG_ON(!PageDirty(page));
    + clear_page_dirty_for_io(page);
    + f2fs_write_meta_page(page, &wbc);
    + if (nwritten++ >= nr_to_write)
    + break;
    + }
    + pagevec_release(&pvec);
    + cond_resched();
    + }
    +
    + if (nwritten)
    + f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
    +
    + return nwritten;
    +}
    +
    +static int f2fs_set_meta_page_dirty(struct page *page)
    +{
    + struct address_space *mapping = page->mapping;
    + struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
    +
    + SetPageUptodate(page);
    + if (!PageDirty(page)) {
    + __set_page_dirty_nobuffers(page);
    + inc_page_count(sbi, F2FS_DIRTY_META);
    + F2FS_SET_SB_DIRT(sbi);
    + return 1;
    + }
    + return 0;
    +}
    +
    +const struct address_space_operations f2fs_meta_aops = {
    + .writepage = f2fs_write_meta_page,
    + .writepages = f2fs_write_meta_pages,
    + .set_page_dirty = f2fs_set_meta_page_dirty,
    +};
    +
    +int check_orphan_space(struct f2fs_sb_info *sbi)
    +{
    + unsigned int max_orphans;
    + int err = 0;
    +
    + /*
    + * considering 512 blocks in a segment 5 blocks are needed for cp
    + * and log segment summaries. Remaining blocks are used to keep
    + * orphan entries with the limitation one reserved segment
    + * for cp pack we can have max 1020*507 orphan entries
    + */
    + max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
    + mutex_lock(&sbi->orphan_inode_mutex);
    + if (sbi->n_orphans >= max_orphans)
    + err = -ENOSPC;
    + mutex_unlock(&sbi->orphan_inode_mutex);
    + return err;
    +}
    +
    +void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
    +{
    + struct list_head *head, *this;
    + struct orphan_inode_entry *new = NULL, *orphan = NULL;
    +
    + mutex_lock(&sbi->orphan_inode_mutex);
    + head = &sbi->orphan_inode_list;
    + list_for_each(this, head) {
    + orphan = list_entry(this, struct orphan_inode_entry, list);
    + if (orphan->ino == ino)
    + goto out;
    + if (orphan->ino > ino)
    + break;
    + orphan = NULL;
    + }
    +retry:
    + new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
    + if (!new) {
    + cond_resched();
    + goto retry;
    + }
    + new->ino = ino;
    + INIT_LIST_HEAD(&new->list);
    +
    + /* add new_oentry into list which is sorted by inode number */
    + if (orphan) {
    + struct orphan_inode_entry *prev;
    +
    + /* get previous entry */
    + prev = list_entry(orphan->list.prev, typeof(*prev), list);
    + if (&prev->list != head)
    + /* insert new orphan inode entry */
    + list_add(&new->list, &prev->list);
    + else
    + list_add(&new->list, head);
    + } else {
    + list_add_tail(&new->list, head);
    + }
    + sbi->n_orphans++;
    +out:
    + mutex_unlock(&sbi->orphan_inode_mutex);
    +}
    +
    +void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
    +{
    + struct list_head *this, *next, *head;
    + struct orphan_inode_entry *orphan;
    +
    + mutex_lock(&sbi->orphan_inode_mutex);
    + head = &sbi->orphan_inode_list;
    + list_for_each_safe(this, next, head) {
    + orphan = list_entry(this, struct orphan_inode_entry, list);
    + if (orphan->ino == ino) {
    + list_del(&orphan->list);
    + kmem_cache_free(orphan_entry_slab, orphan);
    + sbi->n_orphans--;
    + break;
    + }
    + }
    + mutex_unlock(&sbi->orphan_inode_mutex);
    +}
    +
    +static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
    +{
    + struct inode *inode = f2fs_iget(sbi->sb, ino);
    + BUG_ON(IS_ERR(inode));
    + clear_nlink(inode);
    +
    + /* truncate all the data during iput */
    + iput(inode);
    +}
    +
    +int recover_orphan_inodes(struct f2fs_sb_info *sbi)
    +{
    + block_t start_blk, orphan_blkaddr, i, j;
    +
    + if (!(F2FS_CKPT(sbi)->ckpt_flags & CP_ORPHAN_PRESENT_FLAG))
    + return 0;
    +
    + sbi->por_doing = 1;
    + start_blk = __start_cp_addr(sbi) + 1;
    + orphan_blkaddr = __start_sum_addr(sbi) - 1;
    +
    + for (i = 0; i < orphan_blkaddr; i++) {
    + struct page *page = get_meta_page(sbi, start_blk + i);
    + struct f2fs_orphan_block *orphan_blk;
    +
    + orphan_blk = (struct f2fs_orphan_block *)page_address(page);
    + for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
    + nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
    + recover_orphan_inode(sbi, ino);
    + }
    + f2fs_put_page(page, 1);
    + }
    + /* clear Orphan Flag */
    + F2FS_CKPT(sbi)->ckpt_flags &= (~CP_ORPHAN_PRESENT_FLAG);
    + sbi->por_doing = 0;
    + return 0;
    +}
    +
    +static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
    +{
    + struct list_head *head, *this, *next;
    + struct f2fs_orphan_block *orphan_blk = NULL;
    + struct page *page = NULL;
    + unsigned int nentries = 0;
    + unsigned short index = 1;
    + unsigned short orphan_blocks;
    +
    + orphan_blocks = (unsigned short)((sbi->n_orphans +
    + (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
    +
    + mutex_lock(&sbi->orphan_inode_mutex);
    + head = &sbi->orphan_inode_list;
    +
    + /* loop for each orphan inode entry and write them in Jornal block */
    + list_for_each_safe(this, next, head) {
    + struct orphan_inode_entry *orphan;
    +
    + orphan = list_entry(this, struct orphan_inode_entry, list);
    +
    + if (nentries == F2FS_ORPHANS_PER_BLOCK) {
    + /*
    + * an orphan block is full of 1020 entries,
    + * then we need to flush current orphan blocks
    + * and bring another one in memory
    + */
    + orphan_blk->blk_addr = cpu_to_le16(index);
    + orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
    + orphan_blk->entry_count = cpu_to_le32(nentries);
    + set_page_dirty(page);
    + f2fs_put_page(page, 1);
    + index++;
    + start_blk++;
    + nentries = 0;
    + page = NULL;
    + }
    + if (page)
    + goto page_exist;
    +
    + page = grab_meta_page(sbi, start_blk);
    + orphan_blk = (struct f2fs_orphan_block *)page_address(page);
    + memset(orphan_blk, 0, sizeof(*orphan_blk));
    +page_exist:
    + orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
    + }
    + if (!page)
    + goto end;
    +
    + orphan_blk->blk_addr = cpu_to_le16(index);
    + orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
    + orphan_blk->entry_count = cpu_to_le32(nentries);
    + set_page_dirty(page);
    + f2fs_put_page(page, 1);
    +end:
    + mutex_unlock(&sbi->orphan_inode_mutex);
    +}
    +
    +static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
    + block_t cp_addr, unsigned long long *version)
    +{
    + struct page *cp_page_1, *cp_page_2 = NULL;
    + unsigned long blk_size = sbi->blocksize;
    + struct f2fs_checkpoint *cp_block;
    + unsigned long long cur_version = 0, pre_version = 0;
    + unsigned int crc = 0;
    + size_t crc_offset;
    +
    + /* Read the 1st cp block in this CP pack */
    + cp_page_1 = get_meta_page(sbi, cp_addr);
    +
    + /* get the version number */
    + cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
    + crc_offset = le32_to_cpu(cp_block->checksum_offset);
    + if (crc_offset >= blk_size)
    + goto invalid_cp1;
    +
    + crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
    + if (!f2fs_crc_valid(crc, cp_block, crc_offset))
    + goto invalid_cp1;
    +
    + pre_version = le64_to_cpu(cp_block->checkpoint_ver);
    +
    + /* Read the 2nd cp block in this CP pack */
    + cp_addr += le64_to_cpu(cp_block->cp_pack_total_block_count) - 1;
    + cp_page_2 = get_meta_page(sbi, cp_addr);
    +
    + cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
    + crc_offset = le32_to_cpu(cp_block->checksum_offset);
    + if (crc_offset >= blk_size)
    + goto invalid_cp2;
    +
    + crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
    + if (!f2fs_crc_valid(crc, cp_block, crc_offset))
    + goto invalid_cp2;
    +
    + cur_version = le64_to_cpu(cp_block->checkpoint_ver);
    +
    + if (cur_version == pre_version) {
    + *version = cur_version;
    + f2fs_put_page(cp_page_2, 1);
    + return cp_page_1;
    + }
    +invalid_cp2:
    + f2fs_put_page(cp_page_2, 1);
    +invalid_cp1:
    + f2fs_put_page(cp_page_1, 1);
    + return NULL;
    +}
    +
    +int get_valid_checkpoint(struct f2fs_sb_info *sbi)
    +{
    + struct f2fs_checkpoint *cp_block;
    + struct f2fs_super_block *fsb = sbi->raw_super;
    + struct page *cp1, *cp2, *cur_page;
    + unsigned long blk_size = sbi->blocksize;
    + unsigned long long cp1_version = 0, cp2_version = 0;
    + unsigned long long cp_start_blk_no;
    +
    + sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
    + if (!sbi->ckpt)
    + return -ENOMEM;
    + /*
    + * Finding out valid cp block involves read both
    + * sets( cp pack1 and cp pack 2)
    + */
    + cp_start_blk_no = le32_to_cpu(fsb->start_segment_checkpoint);
    + cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
    +
    + /* The second checkpoint pack should start at the next segment */
    + cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
    + cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
    +
    + if (cp1 && cp2) {
    + if (ver_after(cp2_version, cp1_version))
    + cur_page = cp2;
    + else
    + cur_page = cp1;
    + } else if (cp1) {
    + cur_page = cp1;
    + } else if (cp2) {
    + cur_page = cp2;
    + } else {
    + goto fail_no_cp;
    + }
    +
    + cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
    + memcpy(sbi->ckpt, cp_block, blk_size);
    +
    + f2fs_put_page(cp1, 1);
    + f2fs_put_page(cp2, 1);
    + return 0;
    +
    +fail_no_cp:
    + kfree(sbi->ckpt);
    + return -EINVAL;
    +}
    +
    +void set_dirty_dir_page(struct inode *inode, struct page *page)
    +{
    + struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
    + struct list_head *head = &sbi->dir_inode_list;
    + struct dir_inode_entry *new;
    + struct list_head *this;
    +
    + if (!S_ISDIR(inode->i_mode))
    + return;
    +retry:
    + new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
    + if (!new) {
    + cond_resched();
    + goto retry;
    + }
    + new->inode = inode;
    + INIT_LIST_HEAD(&new->list);
    +
    + spin_lock(&sbi->dir_inode_lock);
    + list_for_each(this, head) {
    + struct dir_inode_entry *entry;
    + entry = list_entry(this, struct dir_inode_entry, list);
    + if (entry->inode == inode) {
    + kmem_cache_free(inode_entry_slab, new);
    + goto out;
    + }
    + }
    + list_add_tail(&new->list, head);
    + sbi->n_dirty_dirs++;
    +
    + BUG_ON(!S_ISDIR(inode->i_mode));
    +out:
    + inc_page_count(sbi, F2FS_DIRTY_DENTS);
    + inode_inc_dirty_dents(inode);
    + SetPagePrivate(page);
    +
    + spin_unlock(&sbi->dir_inode_lock);
    +}
    +
    +void remove_dirty_dir_inode(struct inode *inode)
    +{
    + struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
    + struct list_head *head = &sbi->dir_inode_list;
    + struct list_head *this;
    +
    + if (!S_ISDIR(inode->i_mode))
    + return;
    +
    + spin_lock(&sbi->dir_inode_lock);
    + if (atomic_read(&F2FS_I(inode)->dirty_dents))
    + goto out;
    +
    + list_for_each(this, head) {
    + struct dir_inode_entry *entry;
    + entry = list_entry(this, struct dir_inode_entry, list);
    + if (entry->inode == inode) {
    + list_del(&entry->list);
    + kmem_cache_free(inode_entry_slab, entry);
    + sbi->n_dirty_dirs--;
    + break;
    + }
    + }
    +out:
    + spin_unlock(&sbi->dir_inode_lock);
    +}
    +
    +void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
    +{
    + struct list_head *head = &sbi->dir_inode_list;
    + struct dir_inode_entry *entry;
    + struct inode *inode;
    +retry:
    + spin_lock(&sbi->dir_inode_lock);
    + if (list_empty(head)) {
    + spin_unlock(&sbi->dir_inode_lock);
    + return;
    + }
    + entry = list_entry(head->next, struct dir_inode_entry, list);
    + inode = igrab(entry->inode);
    + spin_unlock(&sbi->dir_inode_lock);
    + if (inode) {
    + filemap_flush(inode->i_mapping);
    + iput(inode);
    + } else {
    + /*
    + * We should submit bio, since it exists several
    + * wribacking dentry pages in the freeing inode.
    + */
    + f2fs_submit_bio(sbi, DATA, true);
    + }
    + goto retry;
    +}
    +
    +/**
    + * Freeze all the FS-operations for checkpoint.
    + */
    +void block_operations(struct f2fs_sb_info *sbi)
    +{
    + int t;
    + struct writeback_control wbc = {
    + .sync_mode = WB_SYNC_ALL,
    + .nr_to_write = LONG_MAX,
    + .for_reclaim = 0,
    + };
    +
    + /* Stop renaming operation */
    + mutex_lock_op(sbi, RENAME);
    + mutex_lock_op(sbi, DENTRY_OPS);
    +
    +retry_dents:
    + /* write all the dirty dentry pages */
    + sync_dirty_dir_inodes(sbi);
    +
    + mutex_lock_op(sbi, DATA_WRITE);
    + if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
    + mutex_unlock_op(sbi, DATA_WRITE);
    + goto retry_dents;
    + }
    +
    + /* block all the operations */
    + for (t = DATA_NEW; t <= NODE_TRUNC; t++)
    + mutex_lock_op(sbi, t);
    +
    + mutex_lock(&sbi->write_inode);
    +
    + /*
    + * POR: we should ensure that there is no dirty node pages
    + * until finishing nat/sit flush.
    + */
    +retry:
    + sync_node_pages(sbi, 0, &wbc);
    +
    + mutex_lock_op(sbi, NODE_WRITE);
    +
    + if (get_pages(sbi, F2FS_DIRTY_NODES)) {
    + mutex_unlock_op(sbi, NODE_WRITE);
    + goto retry;
    + }
    + mutex_unlock(&sbi->write_inode);
    +}
    +
    +static void unblock_operations(struct f2fs_sb_info *sbi)
    +{
    + int t;
    + for (t = NODE_WRITE; t >= RENAME; t--)
    + mutex_unlock_op(sbi, t);
    +}
    +
    +static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
    +{
    + struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
    + nid_t last_nid = 0;
    + int nat_upd_blkoff[3];
    + block_t start_blk;
    + struct page *cp_page;
    + unsigned int data_sum_blocks, orphan_blocks;
    + void *kaddr;
    + __u32 crc32 = 0;
    + int i;
    +
    + /* Flush all the NAT/SIT pages */
    + while (get_pages(sbi, F2FS_DIRTY_META))
    + sync_meta_pages(sbi, META, LONG_MAX);
    +
    + next_free_nid(sbi, &last_nid);
    +
    + /*
    + * modify checkpoint
    + * version number is already updated
    + */
    + ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
    + ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
    + ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
    + for (i = 0; i < 3; i++) {
    + ckpt->cur_node_segno[i] =
    + cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
    + ckpt->cur_node_blkoff[i] =
    + cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
    + nat_upd_blkoff[i] = NM_I(sbi)->nat_upd_blkoff[i];
    + ckpt->nat_upd_blkoff[i] = cpu_to_le16(nat_upd_blkoff[i]);
    + ckpt->alloc_type[i + CURSEG_HOT_NODE] =
    + curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
    + }
    + for (i = 0; i < 3; i++) {
    + ckpt->cur_data_segno[i] =
    + cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
    + ckpt->cur_data_blkoff[i] =
    + cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
    + ckpt->alloc_type[i + CURSEG_HOT_DATA] =
    + curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
    + }
    +
    + ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
    + ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
    + ckpt->next_free_nid = cpu_to_le32(last_nid);
    +
    + /* 2 cp + n data seg summary + orphan inode blocks */
    + data_sum_blocks = npages_for_summary_flush(sbi);
    + if (data_sum_blocks < 3)
    + ckpt->ckpt_flags |= CP_COMPACT_SUM_FLAG;
    + else
    + ckpt->ckpt_flags &= (~CP_COMPACT_SUM_FLAG);
    +
    + orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
    + / F2FS_ORPHANS_PER_BLOCK;
    + ckpt->cp_pack_start_sum = 1 + orphan_blocks;
    + ckpt->cp_pack_total_block_count = 2 + data_sum_blocks + orphan_blocks;
    +
    + if (is_umount) {
    + ckpt->ckpt_flags |= CP_UMOUNT_FLAG;
    + ckpt->cp_pack_total_block_count += NR_CURSEG_NODE_TYPE;
    + } else {
    + ckpt->ckpt_flags &= (~CP_UMOUNT_FLAG);
    + }
    +
    + if (sbi->n_orphans)
    + ckpt->ckpt_flags |= CP_ORPHAN_PRESENT_FLAG;
    + else
    + ckpt->ckpt_flags &= (~CP_ORPHAN_PRESENT_FLAG);
    +
    + /* update SIT/NAT bitmap */
    + get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
    + get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
    +
    + crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
    + *(__u32 *)((unsigned char *)ckpt +
    + le32_to_cpu(ckpt->checksum_offset))
    + = cpu_to_le32(crc32);
    +
    + start_blk = __start_cp_addr(sbi);
    +
    + /* write out checkpoint buffer at block 0 */
    + cp_page = grab_meta_page(sbi, start_blk++);
    + kaddr = page_address(cp_page);
    + memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
    + set_page_dirty(cp_page);
    + f2fs_put_page(cp_page, 1);
    +
    + if (sbi->n_orphans) {
    + write_orphan_inodes(sbi, start_blk);
    + start_blk += orphan_blocks;
    + }
    +
    + write_data_summaries(sbi, start_blk);
    + start_blk += data_sum_blocks;
    + if (is_umount) {
    + write_node_summaries(sbi, start_blk);
    + start_blk += NR_CURSEG_NODE_TYPE;
    + }
    +
    + /* writeout checkpoint block */
    + cp_page = grab_meta_page(sbi, start_blk);
    + kaddr = page_address(cp_page);
    + memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
    + set_page_dirty(cp_page);
    + f2fs_put_page(cp_page, 1);
    +
    + /* wait for previous submitted node/meta pages writeback */
    + while (get_pages(sbi, F2FS_WRITEBACK))
    + congestion_wait(BLK_RW_ASYNC, HZ / 50);
    +
    + filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
    + filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
    +
    + /* update user_block_counts */
    + sbi->last_valid_block_count = sbi->total_valid_block_count;
    + sbi->alloc_valid_block_count = 0;
    +
    + /* Here, we only have one bio having CP pack */
    + if (sbi->ckpt->ckpt_flags & CP_ERROR_FLAG)
    + sbi->sb->s_flags |= MS_RDONLY;
    + else
    + sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
    +
    + clear_prefree_segments(sbi);
    + F2FS_RESET_SB_DIRT(sbi);
    +}
    +
    +/**
    + * We guarantee that this checkpoint procedure should not fail.
    + */
    +void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount)
    +{
    + struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
    + unsigned long long ckpt_ver;
    +
    + if (!blocked) {
    + mutex_lock(&sbi->cp_mutex);
    + block_operations(sbi);
    + }
    +
    + f2fs_submit_bio(sbi, DATA, true);
    + f2fs_submit_bio(sbi, NODE, true);
    + f2fs_submit_bio(sbi, META, true);
    +
    + /*
    + * update checkpoint pack index
    + * Increase the version number so that
    + * SIT entries and seg summaries are written at correct place
    + */
    + ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
    + ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
    +
    + /* write cached NAT/SIT entries to NAT/SIT area */
    + flush_nat_entries(sbi);
    + flush_sit_entries(sbi);
    +
    + reset_victim_segmap(sbi);
    +
    + /* unlock all the fs_lock[] in do_checkpoint() */
    + do_checkpoint(sbi, is_umount);
    +
    + unblock_operations(sbi);
    + mutex_unlock(&sbi->cp_mutex);
    +}
    +
    +void init_orphan_info(struct f2fs_sb_info *sbi)
    +{
    + mutex_init(&sbi->orphan_inode_mutex);
    + INIT_LIST_HEAD(&sbi->orphan_inode_list);
    + sbi->n_orphans = 0;
    +}
    +
    +int create_checkpoint_caches(void)
    +{
    + orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
    + sizeof(struct orphan_inode_entry), NULL);
    + if (unlikely(!orphan_entry_slab))
    + return -ENOMEM;
    + inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
    + sizeof(struct dir_inode_entry), NULL);
    + if (unlikely(!inode_entry_slab)) {
    + kmem_cache_destroy(orphan_entry_slab);
    + return -ENOMEM;
    + }
    + return 0;
    +}
    +
    +void destroy_checkpoint_caches(void)
    +{
    + kmem_cache_destroy(orphan_entry_slab);
    + kmem_cache_destroy(inode_entry_slab);
    +}
    --
    1.7.9.5



    ---
    Jaegeuk Kim
    Samsung




    \
     
     \ /
      Last update: 2012-10-23 05:21    [W:4.324 / U:0.892 seconds]
    ©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site